929 research outputs found
Refined architecture of the WASP-8 system: a cautionary tale for traditional Rossiter-McLaughlin analysis
Probing the trajectory of a transiting planet across the disk of its star
through the analysis of its Rossiter-McLaughlin effect can be used to measure
the differential rotation of the host star and the true obliquity of the
system. Highly misaligned systems could be particularly conducive to these
mesurements, which is why we reanalysed the HARPS transit spectra of WASP-8b
using the 'Rossiter-McLaughlin effect reloaded' (reloaded RM) technique. This
approach allows us to isolate the local stellar CCF emitted by the
planet-occulted regions. As a result we identified a 35% variation in the
local CCF contrast along the transit chord, which might trace a deepening of
the stellar lines from the equator to the poles. Whatever its origin, such an
effect cannot be detected when analyzing the RV centroids of the
disk-integrated CCFs through a traditional velocimetric analysis of the RM
effect. Consequently it injected a significant bias into the results obtained
by Queloz et al. (2010) for the projected rotational velocity (1.59 km/s) and the sky-projected
obliquity (-123.0). Using our
technique, we measured these values to be =
1.900.05 km/s and = -143.0. We
found no compelling evidence for differential rotation of the star, although
there are hints that WASP-8 is pointing away from us with the stellar poles
rotating about 25% slower than the equator. Measurements at higher accuracy
during ingress/egress will be required to confirm this result. In contrast to
the traditional analysis of the RM effect, the reloaded RM technique directly
extracts the local stellar CCFs, allowing us to analyze their shape and to
measure their RV centroids, unbiased by variations in their contrast or FWHM.Comment: Accepted for publication in A&A. 12 page
A Balmer lines view of the KELT-9 b atmosphere
Stars and planetary system
High-energy environment of super-Earth 55 Cnc e I: Far-UV chromospheric variability as a possible tracer of planet-induced coronal rain
The irradiation of close-in planets by their star influences their evolution
and might be responsible for a population of ultra-short period planets eroded
to their bare core. In orbit around a bright, nearby G-type star, the
super-Earth 55 Cnc e offers the possibility to address these issues through UV
transit observations. We used the Hubble Space Telescope to observe the transit
in the FUV over 3 epochs in Apr. 2016, Jan. 2017, and Feb. 2017. These
observations reveal significant short- and long-term variability in 55 Cnc
chromospheric emission lines. In the last 2 epochs, we detected a larger flux
in the C III, Si III, and Si IV lines after the planet passed the approaching
quadrature, followed by a flux decrease in the Si IV doublet. In the second
epoch these variations are contemporaneous with flux decreases in the Si II and
C II doublet. All epochs show flux decreases in the N V doublet as well, albeit
at different orbital phases. These flux decreases are consistent with
absorption from optically thin clouds of gas, are mostly localized at low and
redshifted radial velocities in the star rest frame, and occur preferentially
before and during the transit. These 3 points make it unlikely that the
variations are purely stellar, yet we show that the occulting material is also
unlikely to originate from the planet. We tentatively propose that the motion
of 55 Cnc e at the fringes of the stellar corona leads to the formation of a
cool coronal rain. The inhomogeneity and temporal evolution of the stellar
corona would be responsible for the differences between the visits. Additional
variations are detected in the C II doublet in the first epoch and in the O I
triplet in all epochs with a different behavior that points toward intrinsic
stellar variability. Further observations at FUV wavelengths are required to
disentangle between star-planet interactions and the activity of the starComment: 22 pages, 20 figures, accepted for publication in A&
Strong HI Lyman- variations from the 11 Gyr-old host star Kepler-444: a planetary origin ?
Kepler-444 provides a unique opportunity to probe the atmospheric composition
and evolution of a compact system of exoplanets smaller than the Earth. Five
planets transit this bright K star at close orbital distances, but they are too
small for their putative lower atmosphere to be probed at optical/infrared
wavelengths. We used the Space Telescope Imaging Spectrograph instrument
onboard the Hubble Space Telescope to search for the signature of the planet's
upper atmospheres at six independent epochs in the Ly- line. We detect
significant flux variations during the transits of both Kepler-444e and f
(~20%), and also at a time when none of the known planets was transiting
(~40%). Variability in the transition region and corona of the host star might
be the source of these variations. Yet, their amplitude over short time scales
(~2-3 hours) is surprisingly strong for this old (11.2+-1.0Gyr) and apparently
quiet main-sequence star. Alternatively, we show that the in-transits
variations could be explained by absorption from neutral hydrogen exospheres
trailing the two outer planets (Kepler-444e and f). They would have to contain
substantial amounts of water to replenish such hydrogen exospheres, which would
reveal them as the first confirmed ocean-planets. The out-of-transit
variations, however, would require the presence of a yet-undetected Kepler-444g
at larger orbital distance, casting doubt on the planetary origin scenario.
Using HARPS-N observations in the sodium doublet, we derived the properties of
two Interstellar Medium clouds along the line-of-sight toward Kepler-444. This
allowed us to reconstruct the stellar Ly- line profile and to estimate
the XUV irradiation from the star, which would still allow for a moderate mass
loss from the outer planets after 11.2Gyr. Follow-up of the system at XUV
wavelengths will be required to assess this tantalizing possibility.Comment: Accepted for publication in A&A Name of the system added to the title
in most recent versio
A cautionary tale: limitations of a brightness-based spectroscopic approach to chromatic exoplanet radii
Determining wavelength-dependent exoplanet radii measurements is an excellent
way to probe the composition of exoplanet atmospheres. In light of this, Borsa
et al. (2016) sought to develop a technique to obtain such measurements by
comparing ground-based transmission spectra to the expected brightness
variations during an exoplanet transit. However, we demonstrate herein that
this is not possible due to the transit light curve normalisation necessary to
remove the effects of the Earth's atmosphere on the ground-based observations.
This is because the recoverable exoplanet radius is set by the planet-to-star
radius ratio within the transit light curve; we demonstrate this both
analytically and with simulated planet transits, as well as through a
reanalysis of the HD 189733b data.Comment: 5 pages, 2 figures, 1 table, accepted to A&
The RoPES project with HARPS and HARPS-N. I. A system of super-Earths orbiting the moderately active K-dwarf HD 176986
We report the discovery of a system of two super-Earths orbiting the
moderately active K-dwarf HD 176986. This work is part of the RoPES RV program
of G- and K-type stars, which combines radial velocities (RVs) from the HARPS
and HARPS-N spectrographs to search for short-period terrestrial planets. HD
176986 b and c are super-Earth planets with masses of 5.74 and 9.18
M, orbital periods of 6.49 and 16.82 days, and distances of 0.063
and 0.119 AU in orbits that are consistent with circular. The host star is a
K2.5 dwarf, and despite its modest level of chromospheric activity (log(R'hk) =
- 4.90 +- 0.04), it shows a complex activity pattern. Along with the discovery
of the planets, we study the magnetic cycle and rotation of the star. HD 176986
proves to be suitable for testing the available RV analysis technique and
further our understanding of stellar activity.Comment: 21 pages, 24 figures, 7 table
Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy (HEARTS) I. Detection of hot neutral sodium at high altitudes on WASP-49b
High-resolution optical spectroscopy during the transit of HD 189733b, a
prototypical hot Jupiter, allowed the resolution of the Na I D sodium lines in
the planet, giving access to the extreme conditions of the planet upper
atmosphere. We have undertaken HEARTS, a spectroscopic survey of exoplanet
upper atmospheres, to perform a comparative study of hot gas giants and
determine how stellar irradiation affect them. Here, we report on the first
HEARTS observations of the hot Saturn-mass planet WASP-49b. We observed the
planet with the HARPS high-resolution spectrograph at ESO 3.6m telescope. We
collected 126 spectra of WASP-49, covering three transits of WASP-49b. We
analyzed and modeled the planet transit spectrum, while paying particular
attention to the treatment of potentially spurious signals of stellar origin.
We spectrally resolve the Na I D lines in the planet atmosphere and show that
these signatures are unlikely to arise from stellar contamination. The large
contrasts of (D) and (D) require the
presence of hot neutral sodium ( K) at high altitudes
(1.5 planet radius or 45,000 km). From estimating the cloudiness
index of WASP-49b, we determine its atmosphere to be cloud free at the
altitudes probed by the sodium lines. WASP-49b is close to the border of the
evaporation desert and exhibits an enhanced thermospheric signature with
respect to a farther-away planet such as HD 189733b.Comment: Accepted for publication in A&A. 14 page
Cosmogenic activation of Germanium and its reduction for low background experiments
Production of Co and Ge from stable isotopes of Germanium by
nuclear active component of cosmic rays is a principal background source for a
new generation of Ge double beta decay experiments like GERDA and
Majorana. The biggest amount of cosmogenic activity is expected to be produced
during transportation of either enriched material or already grown crystal.
In this letter properties and feasibility of a movable iron shield are
discussed. Activation reduction factor of about 10 is predicted by simulations
with SHIELD code for a simple cylindrical configuration. It is sufficient for
GERDA Phase II background requirements. Possibility of further increase of
reduction factor and physical limitations are considered. Importance of
activation reduction during Germanium purification and detector manufacturing
is emphasized.Comment: 10 pages, 3 tables, 6 figure
- …