74 research outputs found

    The influence of serotonin transporter polymorphisms on cortical activity: A resting EEG study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serotonin transporter gene (<it>5-HTT</it>) is a key regulator of serotonergic neurotransmission and has been linked to various psychiatric disorders. Among the genetic variants, polymorphisms in the <it>5-HTT </it>gene-linked polymorphic region (<it>5-HTTLPR</it>) and variable-number-of-tandem-repeat in the second intron (<it>5-HTTVNTR</it>) have functional consequences. However, their genetic impact on cortical oscillation remains unclear. This study examined the modulatory effects of <it>5-HTTLPR </it>(L-allele carriers vs. non-carriers) and <it>5-HTTVNTR </it>(10-repeat allele carriers vs. non-carriers) polymorphism on regional neural activity in a young female population.</p> <p>Methods</p> <p>Blood samples and resting state eyes-closed electroencephalography (EEG) signals were collected from 195 healthy women and stratified into 2 sets of comparisons of 2 groups each: L-allele carriers (<it>N </it>= 91) vs. non-carriers for <it>5-HTTLPR </it>and 10-repeat allele carriers (<it>N </it>= 25) vs. non-carriers for <it>5-HTTVNTR</it>. The mean power of 18 electrodes across theta, alpha, beta, gamma, gamma1, and gamma2 frequencies was analyzed. Between-group statistics were performed by an independent t-test, and global trends of regional power were quantified by non-parametric analyses.</p> <p>Results</p> <p>Among <it>5-HTTVNTR </it>genotypes, 10-repeat allele carriers showed significantly low regional power at gamma frequencies across the brain. We noticed a consistent global trend that carriers with low transcription efficiency of 5-HTT possessed low regional powers, regardless of frequency bands. The non-parametric analyses confirmed this observation, with <it>P </it>values of 3.071 × 10<sup>-8 </sup>and 1.459 × 10<sup>-12 </sup>for <it>5-HTTLPR </it>and <it>5-HTTVNTR</it>, respectively.</p> <p>Conclusions and Limitations</p> <p>Our analyses showed that genotypes with low 5-HTT activity are associated with less local neural synchronization during relaxation. The implication with respect to genetic vulnerability of 5-HTT across a broad range of psychiatric disorders is discussed. Given the low frequency of 10-repeat allele of <it>5-HTTVNTR </it>in our research sample, the possibility of false positive findings should also be considered.</p

    An integrative ChIP-chip and gene expression profiling to model SMAD regulatory modules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The TGF-β/SMAD pathway is part of a broader signaling network in which crosstalk between pathways occurs. While the molecular mechanisms of TGF-β/SMAD signaling pathway have been studied in detail, the global networks downstream of SMAD remain largely unknown. The regulatory effect of SMAD complex likely depends on transcriptional modules, in which the SMAD binding elements and partner transcription factor binding sites (SMAD modules) are present in specific context.</p> <p>Results</p> <p>To address this question and develop a computational model for SMAD modules, we simultaneously performed chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and mRNA expression profiling to identify TGF-β/SMAD regulated and synchronously coexpressed gene sets in ovarian surface epithelium. Intersecting the ChIP-chip and gene expression data yielded 150 direct targets, of which 141 were grouped into 3 co-expressed gene sets (sustained up-regulated, transient up-regulated and down-regulated), based on their temporal changes in expression after TGF-β activation. We developed a data-mining method driven by the Random Forest algorithm to model SMAD transcriptional modules in the target sequences. The predicted SMAD modules contain SMAD binding element and up to 2 of 7 other transcription factor binding sites (E2F, P53, LEF1, ELK1, COUPTF, PAX4 and DR1).</p> <p>Conclusion</p> <p>Together, the computational results further the understanding of the interactions between SMAD and other transcription factors at specific target promoters, and provide the basis for more targeted experimental verification of the co-regulatory modules.</p

    STAT3 can be activated through paracrine signaling in breast epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many cancers, including breast cancer, have been identified with increased levels of phosphorylated or the active form of Signal Transducers and Activators of Transcription 3 (STAT3) protein. However, whether the tumor microenvironment plays a role in this activation is still poorly understood.</p> <p>Methods</p> <p>Conditioned media, which contains soluble factors from MDA-MB-231 and MDA-MB-468 breast cancer cells and breast cancer associated fibroblasts, was added to MCF-10A breast epithelial and MDA-MB-453 breast cancer cells. The stimulation of phosphorylated STAT3 (p-STAT3) levels by conditioned media was assayed by Western blot in the presence or absence of neutralized IL-6 antibody, or a JAK/STAT3 inhibitor, JSI-124. The stimulation of cell proliferation in MCF-10A cells by conditioned media in the presence or absence of JSI-124 was subjected to MTT analysis. IL-6, IL-10, and VEGF levels were determined by ELISA analysis.</p> <p>Results</p> <p>Our results demonstrated that conditioned media from cell lines with constitutively active STAT3 are sufficient to induce p-STAT3 levels in various recipients that do not possess elevated p-STAT3 levels. This signaling occurs through the JAK/STAT3 pathway, leading to STAT3 phosphorylation as early as 30 minutes and is persistent for at least 24 hours. ELISA analysis confirmed a correlation between elevated levels of IL-6 production and p-STAT3. Neutralization of the IL-6 ligand or gp130 was sufficient to block increased levels of p-STAT3 (Y705) in treated cells. Furthermore, soluble factors within the MDA-MB-231 conditioned media were also sufficient to stimulate an increase in IL-6 production from MCF-10A cells.</p> <p>Conclusion</p> <p>These results demonstrate STAT3 phosphorylation in breast epithelial cells can be stimulated by paracrine signaling through soluble factors from both breast cancer cells and breast cancer associated fibroblasts with elevated STAT3 phosphorylation. The induction of STAT3 phosphorylation is through the IL-6/JAK pathway and appears to be associated with cell proliferation. Understanding how IL-6 and other soluble factors may lead to STAT3 activation via the tumor microenvironment will provide new therapeutic regimens for breast carcinomas and other cancers with elevated p-STAT3 levels.</p

    Towards a global partnership model in interprofessional education for cross-sector problem-solving

    Get PDF
    Objectives A partnership model in interprofessional education (IPE) is important in promoting a sense of global citizenship while preparing students for cross-sector problem-solving. However, the literature remains scant in providing useful guidance for the development of an IPE programme co-implemented by external partners. In this pioneering study, we describe the processes of forging global partnerships in co-implementing IPE and evaluate the programme in light of the preliminary data available. Methods This study is generally quantitative. We collected data from a total of 747 health and social care students from four higher education institutions. We utilized a descriptive narrative format and a quantitative design to present our experiences of running IPE with external partners and performed independent t-tests and analysis of variance to examine pretest and posttest mean differences in students’ data. Results We identified factors in establishing a cross-institutional IPE programme. These factors include complementarity of expertise, mutual benefits, internet connectivity, interactivity of design, and time difference. We found significant pretest–posttest differences in students’ readiness for interprofessional learning (teamwork and collaboration, positive professional identity, roles, and responsibilities). We also found a significant decrease in students’ social interaction anxiety after the IPE simulation. Conclusions The narrative of our experiences described in this manuscript could be considered by higher education institutions seeking to forge meaningful external partnerships in their effort to establish interprofessional global health education

    Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms

    Get PDF
    BACKGROUND: Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. RESULTS: In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. CONCLUSION: Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution
    corecore