42 research outputs found

    Chaotic dynamics of falling disks

    Full text link
    The study of the motion of flat bodies falling in a viscous medium dates back at least to Newton(1) and Maxwell(2), and is relevant to problems in meteorology(3), sedimentology(4), aerospace engineering(1) and chemical engineering(5-8). More recent theoretical studies(9-12) have emphasized the role played by deterministic chaos, although many experimental studies(1,5-8,13,14) were performed before the development of such ideas. Here we report experimental observations of the dynamics of disks falling in water/glycerol mixtures. We find four distinct types of motion, which are mapped out in a 'phase diagram'. The apparently complex behaviour can be reduced to a series of one-dimensional maps, which display a discontinuity at the crossover from periodic to chaotic motion. This discontinuity leads to an unusual intermittency transition(15), not previously observed experimentally, between the two behaviours.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62793/1/388252a0.pd

    Array-CGH and breast cancer

    Get PDF
    The introduction of comparative genomic hybridization (CGH) in 1992 opened new avenues in genomic investigation; in particular, it advanced analysis of solid tumours, including breast cancer, because it obviated the need to culture cells before their chromosomes could be analyzed. The current generation of CGH analysis uses ordered arrays of genomic DNA sequences and is therefore referred to as array-CGH or matrix-CGH. It was introduced in 1998, and further increased the potential of CGH to provide insight into the fundamental processes of chromosomal instability and cancer. This review provides a critical evaluation of the data published on array-CGH and breast cancer, and discusses some of its expected future value and developments

    Turbulence in Rivers

    Get PDF
    The study of turbulence has always been a challenge for scientists working on geophysical flows. Turbulent flows are common in nature and have an important role in geophysical disciplines such as river morphology, landscape modeling, atmospheric dynamics and ocean currents. At present, new measurement and observation techniques suitable for fieldwork can be combined with laboratory and theoretical work to advance the understanding of river processes. Nevertheless, despite more than a century of attempts to correctly formalize turbulent flows, much still remains to be done by researchers and engineers working in hydraulics and fluid mechanics. In this contribution we introduce a general framework for the analysis of river turbulence. We revisit some findings and theoretical frameworks and provide a critical analysis of where the study of turbulence is important and how to include detailed information of this in the analysis of fluvial processes. We also provide a perspective of some general aspects that are essential for researchers/ practitioners addressing the subject for the first time. Furthermore, we show some results of interest to scientists and engineers working on river flows

    A Silicon Transducer for the Determination of Wall-Pressure Fluctuations in Turbulent Boundary Layers

    No full text
    Small and sensitive silicon sensors for turbulent wall-pressure fluctuation measurements have been designed and fabricated using microelectronic technology. For the detection of the pressure fluctuations piezoresistive gauges are placed on a diaphragm and the resistance of these gauges depends on the stresses in the diaphragm. For the determination of the performance of these pressure transducers comparisons with conventional microphones were carried out in a well-defined two-dimensional boundary layer. Power spectra from the silicon pressure transducer revealed a slope in the inertial sublayer corresponding approximately to the 1/3-law of Kolmogorov, and the normalized wall-pressure fluctuations agreed well with other direct measurements
    corecore