222 research outputs found

    System occupancy of a two-class batch-service queue with class-dependent variable server capacity

    Get PDF
    Due to their wide area of applications, queueing models with batch service, where the server can process several customers simultaneously, have been studied frequently. An important characteristic of such batch-service systems is the size of a batch, that is the number of customers that are processed simultaneously. In this paper, we analyse a two-class batch-service queueing model with variable server capacity, where all customers are accommodated in a common first-come-first served single-server queue. The server can only process customers that belong to the same class, so that the size of a batch is determined by the number of consecutive same-class customers. After establishing the system equations that govern the system behaviour, we deduce an expression for the steady-state probability generating function of the system occupancy at random slot boundaries. Also, some numerical examples are given that provide further insight in the impact of the different parameters on the system performance

    Intraspecific Variation in Pinus Pinaster PSII Photochemical Efficiency in Response to Winter Stress and Freezing Temperatures

    Get PDF
    As part of a program to select maritime pine (Pinus pinaster Ait.) genotypes for resistance to low winter temperatures, we examined variation in photosystem II activity by chlorophyll fluorescence. Populations and families within populations from contrasting climates were tested during two consecutive winters through two progeny trials, one located at a continental and xeric site and one at a mesic site with Atlantic influence. We also obtained the LT50, or the temperature that causes 50% damage, by controlled freezing and the subsequent analysis of chlorophyll fluorescence in needles and stems that were collected from populations at the continental trial site

    Effects of Short-Term Continuous Subcutaneous Insulin Infusion on Fasting Plasma Fibroblast Growth Factor-21 Levels in Patients with Newly Diagnosed Type 2 Diabetes Mellitus

    Get PDF
    To investigate the effects of short-term continuous subcutaneous insulin infusion (CSII) on plasma fibroblast growth factor-21 (FGF-21) levels in patients with newly diagnosed type 2 diabetes mellitus (nT2DM).Sixty-eight patients with nT2DM (nT2DM group), and 52 gender-, age- and body mass index (BMI) -matched normal glucose tolerance (NGT group) controls participated in the study. 30 nT2DM patients with FBG≥14.0 mmol/L were treated with CSII for 2 weeks, and were underwent a euglycemic–hyperinsulinemic clamp pre- and post-treatment. Plasma FGF-21 concentrations were measured with a commercial ELISA kit. The relationship between plasma FGF-21 levels and metabolic parameters was also analyzed.<0.05), accompanied by a significant increase in the whole body glucose uptake (M value) and blood glucose control. The changes in plasma FGF-21 levels (ΔFGF-21) were positively associated with the amelioration of insulin resistance shown by the changes in M value.Plasma FGF-21 level is associated with whole body insulin sensitivity and significantly reduced following short-term CSII treatment

    Antimetastatic Effects of Norcantharidin on Hepatocellular Carcinoma by Transcriptional Inhibition of MMP-9 through Modulation of NF-kB Activity

    Get PDF
    The rate of morbidity and mortality of hepatocellular carcinoma (HCC) in Taiwan has not lessened because of difficulty in treating tumor metastasis. Norcantharidin (NCTD) is currently used as an anticancer drug for hepatoma, breast cancer, and colorectal adenocarcinoma. NCTD possesses various biological anticancer activities, including apoptosis. However, detailed effects and molecular mechanisms of NCTD on metastasis are unclear. Thus, HCC cells were subjected to treatment with NCTD and then analyzed to determine the effects of NCTD on cell metastasis.Modified Boyden chamber assays revealed that NCTD treatment inhibited cell migration and invasion capacities of HCC cells substantially. Results of zymography and western blotting showed that activities and protein levels of matrix metalloproteinase-9 (MMP-9) and urokinase plasminogen activator (u-PA) were inhibited by NCTD. Western blot analysis showed that NCTD inhibits phosphorylation of ERK1/2. Testing of mRNA level, quantitative real-time PCR, and promoter assays evaluated the inhibitory effects of NCTD on MMP-9 and u-PA expression in HCC cells. The chromatin immunoprecipitation (ChIP) assay for analyzing the genomic DNA sequences bound to these proteins was reactive to the transcription protein nuclear factor (NF)-kappaB, which was inhibited by NCTD. The expression of NF-kappa B was measured by western blot analysis, which revealed decreased nuclear-factor DNA-binding activity after NCTD treatment.NCTD inhibited MMP-9 and u-PA expression through the phosphorylation of ERK1/2 and NF-kappaB signaling pathway which serves as a powerful chemopreventive agent in HCC cell metastasis

    The epidemiology and natural history of depressive disorders in Hong Kong's primary care

    Get PDF
    Background: Depressive disorders are commonly managed in primary care and family physicians are ideally placed to serve as central providers to these patients. Around the world, the prevalence of depressive disorders in patients presenting to primary care is between 10-20%, of which around 50% remain undiagnosed. In Hong Kong, many barriers exist preventing the optimal treatment and management of patients with depressive disorders. The pathways of care, the long term outcomes and the factors affecting prognosis of these patients requires closer examination. Methods/Design. The aim of this study is to examine the prevalence, incidence and natural history of depressive disorders in primary care and the factors influencing diagnosis, management and outcomes using a cross-sectional study followed by a longitudinal cohort study. Doctors working in primary care settings across Hong Kong have been invited to participate in this study. On one day each month over twelve months, patients in the doctor's waiting room are invited to complete a questionnaire containing items on socio-demography, co-morbidity, family history, previous doctor-diagnosed mental illness, recent mental and other health care utilization, symptoms of depression and health-related quality of life. Following the consultation, the doctors provide information regarding presenting problem, whether they think the patient has depression, and if so, whether the diagnosis is new or old, and the duration of the depressive illness if not a new diagnosis. If the doctor detects a depressive disorder, they are asked to provide information regarding patient management. Patients who consent are followed up by telephone at 2, 12, 26 and 52 weeks. Discussion. The study will provide information regarding cross-sectional prevalence, 12 month incidence, remission rate, outcomes and factors affecting outcomes of patients with depressive disorders in primary care. The epidemiology, outcomes, pathways of care, predictors for prognosis and service needs for primary care patients with depressive disorders will be described and recommendations made for policy and service planning. © 2011 Chin et al; licensee BioMed Central Ltd.published_or_final_versio

    Propagation of kinetic uncertainties through a canonical topology of the TLR4 signaling network in different regions of biochemical reaction space

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signal transduction networks represent the information processing systems that dictate which dynamical regimes of biochemical activity can be accessible to a cell under certain circumstances. One of the major concerns in molecular systems biology is centered on the elucidation of the robustness properties and information processing capabilities of signal transduction networks. Achieving this goal requires the establishment of causal relations between the design principle of biochemical reaction systems and their emergent dynamical behaviors.</p> <p>Methods</p> <p>In this study, efforts were focused in the construction of a relatively well informed, deterministic, non-linear dynamic model, accounting for reaction mechanisms grounded on standard mass action and Hill saturation kinetics, of the canonical reaction topology underlying Toll-like receptor 4 (TLR4)-mediated signaling events. This signaling mechanism has been shown to be deployed in macrophages during a relatively short time window in response to lypopolysaccharyde (LPS) stimulation, which leads to a rapidly mounted innate immune response. An extensive computational exploration of the biochemical reaction space inhabited by this signal transduction network was performed via local and global perturbation strategies. Importantly, a broad spectrum of biologically plausible dynamical regimes accessible to the network in widely scattered regions of parameter space was reconstructed computationally. Additionally, experimentally reported transcriptional readouts of target pro-inflammatory genes, which are actively modulated by the network in response to LPS stimulation, were also simulated. This was done with the main goal of carrying out an unbiased statistical assessment of the intrinsic robustness properties of this canonical reaction topology.</p> <p>Results</p> <p>Our simulation results provide convincing numerical evidence supporting the idea that a canonical reaction mechanism of the TLR4 signaling network is capable of performing information processing in a robust manner, a functional property that is independent of the signaling task required to be executed. Nevertheless, it was found that the robust performance of the network is not solely determined by its design principle (topology), but this may be heavily dependent on the network's current position in biochemical reaction space. Ultimately, our results enabled us the identification of key rate limiting steps which most effectively control the performance of the system under diverse dynamical regimes.</p> <p>Conclusions</p> <p>Overall, our <it>in silico </it>study suggests that biologically relevant and non-intuitive aspects on the general behavior of a complex biomolecular network can be elucidated only when taking into account a wide spectrum of dynamical regimes attainable by the system. Most importantly, this strategy provides the means for a suitable assessment of the inherent variational constraints imposed by the structure of the system when systematically probing its parameter space.</p

    Assessing the queuing process using data envelopment analysis:an application in health centres

    Get PDF
    Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients’ department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages

    Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae)

    Get PDF
    Background: Anchored hybrid enrichment is a form of next-generation sequencing that uses oligonucleotide probes to target conserved regions of the genome flanked by less conserved regions in order to acquire data useful for phylogenetic inference from a broad range of taxa. Once a probe kit is developed, anchored hybrid enrichment is superior to traditional PCR-based Sanger sequencing in terms of both the amount of genomic data that can be recovered and effective cost. Due to their incredibly diverse nature, importance as pollinators, and historical instability with regard to subfamilial and tribal classification, Syrphidae (flower flies or hoverflies) are an ideal candidate for anchored hybrid enrichment-based phylogenetics, especially since recent molecular phylogenies of the syrphids using only a few markers have resulted in highly unresolved topologies. Over 6200 syrphids are currently known and uncovering their phylogeny will help us to understand how these species have diversified, providing insight into an array of ecological processes, from the development of adult mimicry, the origin of adult migration, to pollination patterns and the evolution of larval resource utilization. Results: We present the first use of anchored hybrid enrichment in insect phylogenetics on a dataset containing 30 flower fly species from across all four subfamilies and 11 tribes out of 15. To produce a phylogenetic hypothesis, 559 loci were sampled to produce a final dataset containing 217,702 sites. We recovered a well resolved topology with bootstrap support values that were almost universally >95 %. The subfamily Eristalinae is recovered as paraphyletic, with the strongest support for this hypothesis to date. The ant predators in the Microdontinae are sister to all other syrphids. Syrphinae and Pipizinae are monophyletic and sister to each other. Larval predation on soft-bodied hemipterans evolved only once in this family. Conclusions: Anchored hybrid enrichment was successful in producing a robustly supported phylogenetic hypothesis for the syrphids. Subfamilial reconstruction is concordant with recent phylogenetic hypotheses, but with much higher support values. With the newly designed probe kit this analysis could be rapidly expanded with further sampling, opening the door to more comprehensive analyses targeting problem areas in syrphid phylogenetics and ecology.Peer reviewe

    Standing genetic variation and compensatory evolution in transgenic organisms: a growth-enhanced salmon simulation

    Get PDF
    Genetically modified strains usually are generated within defined genetic backgrounds to minimize variation for the engineered characteristic in order to facilitate basic research investigations or for commercial application. However, interactions between transgenes and genetic background have been documented in both model and commercial agricultural species, indicating that allelic variation at transgene-modifying loci are not uncommon in genomes. Engineered organisms that have the potential to allow entry of transgenes into natural populations may cause changes to ecosystems via the interaction of their specific phenotypes with ecosystem components and services. A transgene introgressing through natural populations is likely to encounter a range of natural genetic variation (among individuals or sub-populations) that could result in changes in phenotype, concomitant with effects on fitness and ecosystem consequences that differ from that seen in the progenitor transgenic strain. In the present study, using a growth hormone transgenic salmon example, we have modeled selection of modifier loci (single and multiple) in the presence of a transgene and have found that accounting for genetic background can significantly affect the persistence of transgenes in populations, potentially reducing or reversing a “Trojan gene” effect. Influences from altered life history characteristics (e.g., developmental timing, age of maturation) and compensatory demographic/ecosystem controls (e.g., density dependence) also were found to have a strong influence on transgene effects. Further, with the presence of a transgene in a population, genetic backgrounds were found to shift in non-transgenic individuals as well, an effect expected to direct phenotypes away from naturally selected optima. The present model has revealed the importance of understanding effects of selection for background genetics on the evolution of phenotypes in populations harbouring transgenes
    corecore