4 research outputs found
The Combinatorics of Alternating Tangles: from theory to computerized enumeration
We study the enumeration of alternating links and tangles, considered up to
topological (flype) equivalences. A weight is given to each connected
component, and in particular the limit yields information about
(alternating) knots. Using a finite renormalization scheme for an associated
matrix model, we first reduce the task to that of enumerating planar
tetravalent diagrams with two types of vertices (self-intersections and
tangencies), where now the subtle issue of topological equivalences has been
eliminated. The number of such diagrams with vertices scales as for
. We next show how to efficiently enumerate these diagrams (in time
) by using a transfer matrix method. We give results for various
generating functions up to 22 crossings. We then comment on their large-order
asymptotic behavior.Comment: proceedings European Summer School St-Petersburg 200