8 research outputs found

    Association between cancer prevalence and use of thiazolidinediones: results from the Vermont Diabetes Information System

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptors (PPARs) have emerged as important drug targets for diabetes. Drugs that activate PPARÎł, such as the thiazolidinediones (TZDs), are widely used for treatment of Type 2 diabetes mellitus. PPARÎł signaling could also play an anti-neoplastic role in several <it>in vitro </it>models, although conflicting results are reported from <it>in vivo </it>models. The effects of TZDs on cancer risk in humans needs to be resolved as these drugs are prescribed for long periods of time in patients with diabetes.</p> <p>Methods</p> <p>A total of 1003 subjects in community practice settings were interviewed at home at the time of enrolment into the Vermont Diabetes Information System, a clinical decision support program. Patients self-reported their personal and clinical characteristics, including any history of malignancy. Laboratory data were obtained directly from the clinical laboratory and current medications were obtained by direct observation of medication containers. We performed a cross-sectional analysis of the interviewed subjects to assess a possible association between cancer diagnosis and the use of TZDs.</p> <p>Results</p> <p>In a multivariate logistic regression model, a diagnosis of cancer was significantly associated with TZD use, even after correcting for potential confounders including other oral anti-diabetic agents (sulfonylureas and biguanides), age, glycosylated hemoglobin A1C, body mass index, cigarette smoking, high comorbidity, and number of prescription medications (odds ratio = 1.59, <it>P </it>= 0.04). This association was particularly strong among patients using rosiglitazone (OR = 1.89, <it>P </it>= 0.02), and among women (OR = 2.07, <it>P </it>= 0.01).</p> <p>Conclusion</p> <p>These data suggest an association between TZD use and cancer in patients with diabetes. Further studies are required to determine if this association is causal.</p

    FGF4 and Retinoic Acid Direct Differentiation of hESCs into PDX1-Expressing Foregut Endoderm in a Time- and Concentration-Dependent Manner

    Get PDF
    BACKGROUND: Retinoic acid (RA) and fibroblast growth factor 4 (FGF4) signaling control endoderm patterning and pancreas induction/expansion. Based on these findings, RA and FGFs, excluding FGF4, have frequently been used in differentiation protocols to direct differentiation of hESCs into endodermal and pancreatic cell types. In vivo, these signaling pathways act in a temporal and concentration-dependent manner. However, in vitro, the underlying basis for the time of addition of growth and differentiation factors (GDFs), including RA and FGFs, as well as the concentration is lacking. Thus, in order to develop robust and reliable differentiation protocols of ESCs into mature pancreatic cell types, including insulin-producing beta cells, it will be important to mechanistically understand each specification step. This includes differentiation of mesendoderm/definitive endoderm into foregut endoderm--the origin of pancreatic endoderm. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide data on the individual and combinatorial role of RA and FGF4 in directing differentiation of ActivinA (AA)-induced hESCs into PDX1-expressing cells. FGF4's ability to affect endoderm patterning and specification in vitro has so far not been tested. By testing out the optimal concentration and timing of addition of FGF4 and RA, we present a robust differentiation protocol that on average generates 32% PDX1(+) cells. Furthermore, we show that RA is required for converting AA-induced hESCs into PDX1(+) cells, and that part of the underlying mechanism involves FGF receptor signaling. Finally, further characterization of the PDX1(+) cells suggests that they represent foregut endoderm not yet committed to pancreatic, posterior stomach, or duodenal endoderm. CONCLUSION/SIGNIFICANCE: In conclusion, we show that RA and FGF4 jointly direct differentiation of PDX1(+) foregut endoderm in a robust and efficient manner. RA signaling mediated by the early induction of RARbeta through AA/Wnt3a is required for PDX1 expression. Part of RA's activity is mediated by FGF signaling

    Electrification of volcanic plumes

    No full text
    corecore