1,933 research outputs found
Vector Meson Propagator and Baryon Current Conservation
If baryons couple only with -mesons, one found the baryon spectral
function may be negative. We show this unacceptable result is caused by the
-terms in the -meson propagator. Their contribution may
not vanish in approximate calculations which violate the baryon current
conserves. A rule is suggested, by which the calculated baryon spectral
function is well behaved.Comment: 9 pages (LaTeX file), 3 figures (PostScript file
Coupled Dyson-Schwinger Equations and Effects of Self-Consistency
Using the model as an effective tool, the effects of
self-consistency are studied in some detail. A coupled set of Dyson-Schwinger
equations for the renormalized baryon and meson propagators in the model is solved self-consistently according to the dressed
Hartree-Fock scheme, where the hadron propagators in both the baryon and meson
self-energies are required to also satisfy this coupled set of equations. It is
found that the self-consistency affects the baryon spectral function
noticeably, if only the interaction with mesons is considered.
However, there is a cancellation between the effects due to the and
mesons and the additional contribution of mesons makes the
above effect insignificant. In both the and cases the
effects of self-consistency on meson spectral function are perceptible, but
they can nevertheless be taken account of without a self-consistent
calculation. Our study indicates that to include the meson propagators in the
self-consistency requirement is unnecessary and one can stop at an early step
of an iteration procedure to obtain a good approximation to the fully
self-consistent results of all the hadron propagators in the model, if an
appropriate initial input is chosen. Vertex corrections and their effects on
ghost poles are also studied.Comment: 20 pages (include 5 tables), 17 figures (PostScript file
Effect of B2O3 and P2O5 on fluorosilicic mica glass-ceramic sintering process
To study the effect of B2O3 and P2O5 on fluorosilicic mica glass-ceramic sintering process, six sets of K2O-MgO-SiO2-F glasses were prepared by using B2O3 and P2O5 as sintering aid, respectively. Green bodies of the glass powder were formed by gel casting and sintered at 800, 850, 900, 950, 1000oC for 6 hours, resectively. The sintering and crystallization behavior were studied by thermal shrinkage , X-ray diffraction and SEM. The results showed that the shrinkage rate of the glass with 2wt% B2O3 and P2O5 was highest, while the rate of the glass with 5wt% P2O5 was lowest. An additional crystal other than fluorosilicic mica was precipitated in the glass ceramics generated by sintering of glass powder. The present results confirmed that the glass powder of pure K2O-MgO-SiO2-Fsystem had poor sinterability, while glass powder with minor addition of P2O5 and/or B2O3 showed good sinterability. This result was also verified by SEM
Ammonium uptake and assimilation are required for rice defense against sheath blight disease
Nitrogen (N) is an important nutrient for plant growth and yield production, and rice grown in paddy soil mainly uses ammonium (NH4+) as its N source. Previous studies have shown that N status is tightly connected to plant defense; however, the roles of NH4+ uptake and assimilation in rice sheath blight disease response have not been studied previously. Here, we analyzed the effects of different N sources on plant defense against Rhizoctonia solani. The results indicated that rice plants grown in N-free conditions had higher resistance to sheath blight than those grown under N conditions. In greater detail, rice plants cultured with glutamine as the sole N source were more susceptible to sheath blight disease compared to the groups using NH4+ and nitrate (NO3–) as sole N sources. N deficiency severely inhibited plant growth; therefore, ammonium transporter 1;2 overexpressors (AMT1;2 OXs) were generated to test their growth and defense ability under low N conditions. AMT1;2 OXs increased N use efficiency and exhibited less susceptible symptoms to R. solani and highly induced the expression of PBZ1 compared to the wild-type controls upon infection of R. solani. Furthermore, the glutamine synthetase 1;1 (GS1;1) mutant (gs1;1) was more susceptible to R. solani infection than the wild-type control, and the genetic combination of AMT1;2 OX and gs1;1 revealed that AMT1;2 OX was less susceptible to R. solani and required GS1;1 activity. In addition, cellular NH4+ content was higher in AMT1;2 OX and gs1;1 plants, indicating that NH4+ was not directly controlling plant defense. In conclusion, the present study showed that the activation of NH4+ uptake and assimilation were required for rice resistance against sheath blight disease
A Comparative Study of within QCD Sum Rules with Two Typical Correlators up to Next-to-Leading Order
The B-decay constant is an important component for studying -meson
decays, which can be studied through QCD sum rules. We make a detailed
discussion on from two sum rules, i.e. sum rules I and II, which are
derived from the conventional correlator and the correlator with chiral
currents respectively. It is found that these two sum rules are consistent with
each other. However, the sum rules II has less uncertainty sources than that of
sum rules I, and then it can be more accurate if we know the dimension-four
gluon condensate well. It is found that decreases with the increment of
, and to compare with the Belle experimental data on , both sum rules
prefer smaller pole -quark mass, GeV. By varying all the
input parameters in their reasonable region and adding all the uncertainties
together in quadrature, we obtain MeV for sum rules I and
MeV for sum rules II.Comment: 11 pages, 4 figures, 2 tables. To match the printed version. To be
published in Communications in Theoretical Physic
Random distributed feedback Raman fiber laser with polarized pumping
In this letter, the polarization properties of a random fiber laser operating via Raman gain and random distributed feedback owing to Rayleigh scattering are investigated for the first time. Using polarized pump, the partially polarized generation is obtained with a generation spectrum exhibiting discrete narrow spectral features contrary to the smooth spectrum observed for the depolarized pump. The threshold, output power, degree of polarization and the state of polarization (SOP) of the lasing can be significantly influenced by the SOP of the pump. Fine narrow spectral components are also sensitive to the SOP of the pump wave. Furthermore, we found that random lasing's longitudinal power distributions are different in the case of polarized and depolarized pumping that results in considerable reduction of the generation slope efficiency for the polarized radiation. Our results indicate that polarization effects play an important role on the performance of the random fiber laser. This work improves the understanding of the physics of random lasing in fibers and makes a step forward towards the establishment of the vector model of random fiber lasers
High resolution optical time-domain reflectometry based on correlation utilizing an all-fiber chaotic source
We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis
Long-range and high-resolution correlation optical time-domain reflectometry utilizing an all optical chaotic source
A high resolution optical time domain reflectometry (OTDR) based on an all-fiber chaotic source is demonstrated. We analyze the key factors limiting the operational range of such an OTDR, e.g., integral Rayleigh backscattering and the fiber loss, which degrade the optical signal to noise ratio at the receiver side, and then the guideline for counter-act such signal fading is discussed. The experimentally demonstrated correlation OTDR presents ability of 100km sensing range and 8.2cm spatial resolution (1.2 million resolved points), as a verification of the theoretical analysis. To the best of our knowledge, this is the first time that correlation OTDR measurement is performed over such a long distance with such high precision
- …