110,216 research outputs found
Experimentally realizable control fields in quantum Lyapunov control
As a hybrid of techniques from open-loop and feedback control, Lyapunov
control has the advantage that it is free from the measurement-induced
decoherence but it includes the system's instantaneous message in the control
loop. Often, the Lyapunov control is confronted with time delay in the control
fields and difficulty in practical implementations of the control. In this
paper, we study the effect of time-delay on the Lyapunov control, and explore
the possibility of replacing the control field with a pulse train or a
bang-bang signal. The efficiency of the Lyapunov control is also presented
through examining the convergence time of the controlled system. These results
suggest that the Lyapunov control is robust gainst time delay, easy to realize
and effective for high-dimensional quantum systems
Photonic band structure of ZnO photonic crystal slab laser
We recently reported on the first realization of ultraviolet photonic crystal
laser based on zinc oxide [Appl. Phys. Lett. {\bf 85}, 3657 (2004)]. Here we
present the details of structural design and its optimization. We develop a
computational super-cell technique, that allows a straightforward calculation
of the photonic band structure of ZnO photonic crystal slab on sapphire
substrate. We find that despite of small index contrast between the substrate
and the photonic layer, the low order eigenmodes have predominantly
transverse-electric (TE) or transverse-magnetic (TM) polarization. Because
emission from ZnO thin film shows strong TE preference, we are able to limit
our consideration to TE bands, spectrum of which can possess a complete
photonic band gap with an appropriate choice of structure parameters. We
demonstrate that the geometry of the system may be optimized so that a sizable
band gap is achieved.Comment: 8 pages, 7 figure
Asteroseismology of the Scuti star HD 50844
Aims. We aim to probe the internal structure and investigate more detailed
information of the Scuti star HD 50844 with asteroseismology. Methods.
We analyse the observed frequencies of the Scuti star HD 50844
obtained by Balona (2014), and search for possible multiplets based on the
rotational splitting law of g-mode. We tried to disentangle the frequency
spectra of HD 50844 by means of the rotational splitting only. We then compare
them with theoretical pulsation modes, which correspond to stellar evolutionary
models with various sets of initial metallicity and stellar mass, to find the
best-fitting model. Results. There are three multiplets including two complete
triplets and one incomplete quintuplet, in which mode identifications for
spherical harmonic degree and azimuthal number are unique. The
corresponding rotational period of HD 50844 is found to be
2.44 days. The physical parameters of HD 50844 are well
limited in a small region by three modes identified as nonradial ones
(, , and ) and by the fundamental radial mode
(). Our results show that the three nonradial modes (, ,
and ) are all mixed modes, which mainly represent the property of the
helium core. The fundamental radial mode () mainly represents the
property of the stellar envelope. In order to fit these four pulsation modes,
both the helium core and the stellar envelope must be matched to the actual
structure of HD 50844. Finally, the mass of the helium core of HD 50844 is
estimated to be 0.173 0.004 for the first time. The physical
parameters of HD 50844 are determined to be 1.81 0.01 ,
0.008 0.001. 7508 125 K, log 3.658
0.004, 3.300 0.023 , 30.98 2.39 .Comment: 11 pages, 7 figures, 6 tables, accepted for publication in A&
- …