65 research outputs found

    Exogenous interleukin-6, interleukin-13, and interferon-gamma provoke pulmonary abnormality with mild edema in enterovirus 71-infected mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neonatal mice developed neurological disease and pulmonary dysfunction after an infection with a mouse-adapted human Enterovirus 71 (EV71) strain MP4. However, the hallmark of severe human EV71 infection, pulmonary edema (PE), was not evident.</p> <p>Methods</p> <p>To test whether EV71-induced PE required a proinflammatory cytokine response, exogenous pro-inflammatory cytokines were administered to EV71-infected mice during the late stage of infection.</p> <p>Results</p> <p>After intracranial infection of EV71/MP4, 7-day-old mice developed hind-limb paralysis, pulmonary dysfunction, and emphysema. A transient increase was observed in serum IL-6, IL-10, IL-13, and IFN-γ, but not noradrenaline. At day 3 post infection, treatment with IL-6, IL-13, and IFN-γ provoked mild PE and severe emphysema that were accompanied by pulmonary dysfunction in EV71-infected, but not herpes simplex virus-1 (HSV-1)-infected control mice. Adult mice did not develop PE after an intracerebral microinjection of EV71 into the nucleus tractus solitarii (NTS). While viral antigen accumulated in the ventral medulla and the NTS of intracerebrally injected mice, neuronal loss was observed in the ventral medulla only.</p> <p>Conclusions</p> <p>Exogenous IL-6, IL-13, and IFN-γ treatment could induce mild PE and exacerbate pulmonary abnormality of EV71-infected mice. However, other factors such as over-activation of the sympathetic nervous system may also be required for the development of classic PE symptoms.</p

    Differential roles of nitric oxide synthase isozymes in cardiotoxicity and mortality following chronic doxorubicin treatment in mice

    Get PDF
    The roles of individual nitric oxide synthases (NOS) in anthracycline-related cardiotoxicity are not completely understood. We investigated the effects of a chronic treatment with doxorubicin (DOX) on knockouts of the individual NOS isozymes and on transgenic mice with myocardial overexpression of eNOS. Fractional shortening (FS) was reduced in untreated homozygous nNOS and iNOS knockouts as well as in eNOS transgenics. DOX-induced FS decrease in wild-type mice was attenuated only in eNOS knockouts, which were found to overexpress nNOS. No worsening of contractility was observed in DOX-treated eNOS transgenics and iNOS knockouts. Although the surviving DOX-treated nNOS knockouts exhibited no further impairment in contractility, most (70%) animals died within 7 weeks after treatment onset. In comparison to untreated wild-type hearts, the nitric oxide (NO) level was lower in hearts from DOX-treated wild-type mice and in all three untreated knockouts. DOX treatment had no effect on NO in the knockouts. These data indicate differential roles of the individual NOS in DOX-induced cardiotoxicity. Protection against DOX effects conferred by eNOS deletion may be mediated by a compensatory overexpression of nNOS. NOS inhibition-based prevention of anthracycline-induced cardiotoxicity should be eNOS-selective, simultaneously avoiding inhibiting nNOS

    Glycine microinjected in the rat dorsal vagal nucleus increases arterial pressure.

    No full text
    corecore