7 research outputs found

    Independent motile microplast formation correlates with glioma cell invasiveness

    No full text
    Diffuse brain invasion co ntributes to the poor prognosis for patients with gliomas. Analyzing glioma cell migration in vitro, we have demonstrated the spontaneous shedding of anucleate cell fragments that separate from glioma cell bodies and maintain viability from hours to days. Unlike previously described cell fragments that are released from cells as diffusible vectors, glioma cell fragments are independently motile. We used computerized time-lapse microscopy to characterize the formation of these independent motile microplasts (IMMPs) in human cell cultures derived from the most highly invasive glial tumor, glioblastoma. IMMPs were larger than previously described cell fragments, ranging in size from approximately 2% to nearly half of the area of their parent cells. Complex cell-like behaviors—including establishment of polarity, extension of lamellipodia and filopodia, and change in direction of movement—remained intact in IMMPs. The average direction and velocity of the IMMPs were indistinguishable from those of their parent cells. IMMPs formed at a significantly higher rate in glioma cell lines rendered more invasive by overexpression of invasion-related genes than in vector-transfected controls. The correlation with cell invasiveness indicates that IMMP formation may be related to the cell-invasive phenotype. Further investigation will determine whether IMMPs represent a novel addition to the growing list of viable cell fragments with biological relevance

    Spectroscopy with Lasers

    No full text

    Die Nebennierenrinde

    No full text
    corecore