22 research outputs found

    Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Get PDF
    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation

    Sleep and immune function

    Get PDF
    Sleep and the circadian system exert a strong regulatory influence on immune functions. Investigations of the normal sleep–wake cycle showed that immune parameters like numbers of undifferentiated naïve T cells and the production of pro-inflammatory cytokines exhibit peaks during early nocturnal sleep whereas circulating numbers of immune cells with immediate effector functions, like cytotoxic natural killer cells, as well as anti-inflammatory cytokine activity peak during daytime wakefulness. Although it is difficult to entirely dissect the influence of sleep from that of the circadian rhythm, comparisons of the effects of nocturnal sleep with those of 24-h periods of wakefulness suggest that sleep facilitates the extravasation of T cells and their possible redistribution to lymph nodes. Moreover, such studies revealed a selectively enhancing influence of sleep on cytokines promoting the interaction between antigen presenting cells and T helper cells, like interleukin-12. Sleep on the night after experimental vaccinations against hepatitis A produced a strong and persistent increase in the number of antigen-specific Th cells and antibody titres. Together these findings indicate a specific role of sleep in the formation of immunological memory. This role appears to be associated in particular with the stage of slow wave sleep and the accompanying pro-inflammatory endocrine milieu that is hallmarked by high growth hormone and prolactin levels and low cortisol and catecholamine concentrations

    Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis

    Full text link

    Pediatric Inflammatory Diseases

    No full text

    Effects of carbamazepine on pituitary-adrenal function in healthy volunteers

    No full text
    Carbamazepine (CBZ) is a widely used therapeutic agent in seizure, pain, and mood disorders. Although CBZ has been shown to inhibit hypothalamic CRH secretion in vitro, limited data suggest that systemic CBZ induces pituitary-adrenal activation. Few data are available to reconcile these effects or clarify their mechanism(s), particularly in healthy human subjects. We report here a study of basal ACTH and cortisol secretion and their responses to ovine CRH administration in nine healthy volunteers, studied both during repeated (2-3 weeks) administration of CBZ and while medication free. CBZ significantly increased mean 24-h urinary free cortisol (mean +/- SE, 197 +/- 17 vs. 137 +/- 24 nmol/day; P less than 0.02) and evening basal total plasma cortisol (113 +/- 17 vs. 83 +/- 14 nmol/L; P less than 0.05) as well as cortisol-binding globulin-binding capacity (497 +/- 36 vs. 433 +/- 28 nmol/L; P less than 0.01). Despite the CBZ-induced hypercortisolism, plasma ACTH responses to CRH during CBZ treatment remained robust, rather than being suppressed by basal hypercortisolism. In fact, during CBZ treatment, we noted a positive correlation between the increase in basal plasma cortisol and the increase in the plasma ACTH response to CRH (r = 0.65; P less than 0.05). We also observed a reduction in cortisol-binding globulin-binding capacity after CRH administration (315 +/- 25 vs. 433 +/- 28 nmol/L; P less than 0.001), which was accentuated by CBZ treatment (342 +/- 19 vs. 497 +/- 36 nmol/L; P less than 0.001; magnitude of fall, -155 +/- 22 nmol/L on CBZ vs. -118 +/- 11 nmol/L off CBZ; P less than 0.05). We conclude that CBZ increases plasma cortisol secretion in healthy volunteers independent of its effect on plasma cortisol-binding capacity. This pituitary-adrenal activation seems to reflect a pituitary, rather than a hypothalamic, effect of CBZ. Hence, despite CBZ-induced hypercortisolism, the ACTH response to CRH remained robust in direct proportion to the CBZ-induced rise in basal plasma cortisol. Thus, we propose that the increased cortisol secretion observed during CBZ treatment reflects a relative inefficacy of glucocorticoid negative feedback at the pituitary. This pituitary-driven increase in cortisol secretion combined with the expected reduction in centrally directed CRH secretion could contribute to the anticonvulsant properties of CBZ

    Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells

    No full text
    International audienceCross-presentation of cell-associated antigen is important in the priming of CD8(+) T-cell responses to proteins that are not expressed by antigen-presenting cells (APCs). In vivo, dendritic cells are the main cross-presenting APC, and much is known regarding their ability to capture and process cell-associated antigen. In contrast, little is known about the way death effector pathways influence the efficiency of cross-priming. Here, we compared two important mechanisms of programmed cell death: classical apoptosis, as it occurs in wild-type (WT) fibroblasts, and caspase-independent cell death, which occurs with increased features of autophagy in Bax/Bak(-/-) fibroblasts. We assessed virally infected WT and Bax/Bak(-/-) fibroblasts as a source of cell-associated antigen. We found that immunization with cells undergoing autophagy before cell death was superior in facilitating the cross-priming of antigen-specific CD8(+) T cells. Strikingly, silencing of Atg5 expression inhibited priming. We interpret this to be a novel form of 'immunogenic death' with the enhanced priming efficiency being a result of persistent MHC I cross-presentation and the induction of type I interferons. These results offer the first molecular evidence that catabolic pathways, including autophagy, influence the efficiency of cross-priming. We predict that targeting the autophagy cascade may provide a therapeutic strategy for achieving robust cross-priming of viral and tumor-specific CD8(+) T cells
    corecore