1,831 research outputs found
Dominant-negative calcium channel suppression by truncated constructs involves a kinase implicated in the unfolded protein response
Expression of the calcium channel Ca(V)2.2 is markedly suppressed by coexpression with truncated constructs of Ca(V)2.2. Furthermore, a two-domain construct of Ca(V)2.1 mimicking an episodic ataxia-2 mutation strongly inhibited Ca(V)2.1 currents. We have now determined the specificity of this effect, identified a potential mechanism, and have shown that such constructs also inhibit endogenous calcium currents when transfected into neuronal cell lines. Suppression of calcium channel expression requires interaction between truncated and full-length channels, because there is inter-subfamily specificity. Although there is marked cross-suppression within the Ca(V)2 calcium channel family, there is no cross-suppression between Ca(V)2 and Ca(V)3 channels. The mechanism involves activation of a component of the unfolded protein response, the endoplasmic reticulum resident RNA-dependent kinase (PERK), because it is inhibited by expression of dominant-negative constructs of this kinase. Activation of PERK has been shown previously to cause translational arrest, which has the potential to result in a generalized effect on protein synthesis. In agreement with this, coexpression of the truncated domain I of Ca(V)2.2, together with full-length Ca(V)2.2, reduced the level not only of Ca(V)2.2 protein but also the coexpressed alpha2delta-2. Thapsigargin, which globally activates the unfolded protein response, very markedly suppressed Ca(V)2.2 currents and also reduced the expression level of both Ca(V)2.2 and alpha2delta-2 protein. We propose that voltage-gated calcium channels represent a class of difficult-to-fold transmembrane proteins, in this case misfolding is induced by interaction with a truncated cognate Ca(V) channel. This may represent a mechanism of pathology in episodic ataxia-2
Sequence learning in Associative Neuronal-Astrocytic Network
The neuronal paradigm of studying the brain has left us with limitations in
both our understanding of how neurons process information to achieve biological
intelligence and how such knowledge may be translated into artificial
intelligence and its most brain-derived branch, neuromorphic computing.
Overturning our fundamental assumptions of how the brain works, the recent
exploration of astrocytes is revealing that these long-neglected brain cells
dynamically regulate learning by interacting with neuronal activity at the
synaptic level. Following recent experimental evidence, we designed an
associative, Hopfield-type, neuronal-astrocytic network and analyzed the
dynamics of the interaction between neurons and astrocytes. We show that
astrocytes were sufficient to trigger transitions between learned memories in
the neuronal component of the network. Further, we mathematically derived the
timing of the transitions that was governed by the dynamics of the
calcium-dependent slow-currents in the astrocytic processes. Overall, we
provide a brain-morphic mechanism for sequence learning that is inspired by,
and aligns with, recent experimental findings. To evaluate our model, we
emulated astrocytic atrophy and showed that memory recall becomes significantly
impaired after a critical point of affected astrocytes was reached. This
brain-inspired and brain-validated approach supports our ongoing efforts to
incorporate non-neuronal computing elements in neuromorphic information
processing.Comment: 8 pages, 5 figure
MODIS vegetation products as proxies of photosynthetic potential along a gradient of meteorologically and biologically driven ecosystem productivity
© 2016 Author(s). A direct relationship between gross ecosystem productivity (GEP) estimated by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll and temperate woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of GEP and four measures of photosynthetic potential, derived via parameterization of the light response curve: ecosystem light use efficiency (LUE), photosynthetic capacity (Pc), GEP at saturation (GEPsat), and quantum yield (α) with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD) leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite-derived biophysical products constitute a measurement of ecosystem structure (e.g. leaf area index-quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity-quality of leaves), rather than GEP. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature, and/or precipitation) and relatively aseasonal ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite-derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). However, we found a statistical significant relationship between the seasonal measures of photosynthetic potential (Pc and LUE) and VIs, where each ecosystem aligns along a continuum; we emphasize here that knowledge of the conditions in which flux tower measurements and VIs or other remote sensing products converge greatly advances our understanding of the mechanisms driving the carbon cycle (phenology and climate drivers) and provides an ecological basis for interpretation of satellite-derived measures of greenness
Incidence of community-acquired lower respiratory tract infections and pneumonia among older adults in the United Kingdom: a population-based study.
Community-acquired lower respiratory tract infections (LRTI) and pneumonia (CAP) are common causes of morbidity and mortality among those aged ≥65 years; a growing population in many countries. Detailed incidence estimates for these infections among older adults in the United Kingdom (UK) are lacking. We used electronic general practice records from the Clinical Practice Research Data link, linked to Hospital Episode Statistics inpatient data, to estimate incidence of community-acquired LRTI and CAP among UK older adults between April 1997-March 2011, by age, sex, region and deprivation quintile. Levels of antibiotic prescribing were also assessed. LRTI incidence increased with fluctuations over time, was higher in men than women aged ≥70 and increased with age from 92.21 episodes/1000 person-years (65-69 years) to 187.91/1000 (85-89 years). CAP incidence increased more markedly with age, from 2.81 to 21.81 episodes/1000 person-years respectively, and was higher among men. For both infection groups, increases over time were attenuated after age-standardisation, indicating that these rises were largely due to population aging. Rates among those in the most deprived quintile were around 70% higher than the least deprived and were generally higher in the North of England. GP antibiotic prescribing rates were high for LRTI but lower for CAP (mostly due to immediate hospitalisation). This is the first study to provide long-term detailed incidence estimates of community-acquired LRTI and CAP in UK older individuals, taking person-time at risk into account. The summary incidence commonly presented for the ≥65 age group considerably underestimates LRTI/CAP rates, particularly among older individuals within this group. Our methodology and findings are likely to be highly relevant to health planners and researchers in other countries with aging populations
Search for Exotic Strange Quark Matter in High Energy Nuclear Reactions
We report on a search for metastable positively and negatively charged states
of strange quark matter in Au+Pb reactions at 11.6 A GeV/c in experiment E864.
We have sampled approximately six billion 10% most central Au+Pb interactions
and have observed no strangelet states (baryon number A < 100 droplets of
strange quark matter). We thus set upper limits on the production of these
exotic states at the level of 1-6 x 10^{-8} per central collision. These limits
are the best and most model independent for this colliding system. We discuss
the implications of our results on strangelet production mechanisms, and also
on the stability question of strange quark matter.Comment: 21 pages, 9 figures, to be published in Nuclear Physics A (Carl Dover
memorial edition
Adjuvant Intravesical Chemohyperthermia Versus Passive Chemotherapy in Patients with Intermediate-risk Non–muscle-invasive Bladder Cancer (HIVEC-II): A Phase 2, Open-label, Randomised Controlled Trial
Background: Adjuvant intravesical chemotherapy following tumour resection is recommended for intermediate-risk non–muscle-invasive bladder cancer (NMIBC). Objective: To assess the efficacy and safety of adjuvant intravesical chemohyperthermia (CHT) for intermediate-risk NMIBC. Design, setting, and participants: HIVEC-II is an open-label, phase 2 randomised controlled trial of CHT versus chemotherapy alone in patients with intermediate-risk NMIBC recruited at 15 centres between May 2014 and December 2017 (ISRCTN 23639415). Randomisation was stratified by treating hospital. Interventions: Patients were randomly assigned (1:1) to adjuvant CHT with mitomycin C at 43°C or to room-temperature mitomycin C (control). Both treatment arms received six weekly instillations of 40 mg of mitomycin C lasting for 60 min. Outcome measurements and statistical analysis: The primary endpoint was 24-mo disease-free survival as determined via cystoscopy and urinary cytology. Analysis was by intention to treat. Results: A total of 259 patients (131 CHT vs 128 control) were randomised. At 24 mo, 42 patients (32%) in the CHT group and 49 (38%) in the control group had experienced recurrence. Disease-free survival at 24 mo was 61% (95% confidence interval [CI] 51–69%) in the CHT arm and 60% (95% CI 50–68%) in the control arm (hazard ratio [HR] 0.92, 95% CI 0.62–1.37; log-rank p = 0.8). Progression-free survival was higher in the control arm (HR 3.44, 95% CI 1.09–10.82; log-rank p = 0.02) on intention-to-treat analysis but was not significantly higher on per-protocol analysis (HR 2.87, 95% CI 0.83–9.98; log-rank p = 0.06). Overall survival was similar (HR 2.55, 95% CI 0.77–8.40; log-rank p = 0.09). Patients undergoing CHT were less likely to complete their treatment (n =75, 59% vs n = 111, 89%). Adverse events were reported by 164 patients (87 CHT vs 77 control). Major (grade III) adverse events were rare (13 CHT vs 7 control). Conclusions: CHT cannot be recommended over chemotherapy alone for intermediate-risk NMIBC. Adverse events following CHT were of low grade and short-lived, although patients were less likely to complete their treatment. Patient summary: The HIVEC-II trial investigated the role of heated chemotherapy instillations in the bladder for treatment of intermediate-risk non–muscle-invasive bladder cancer. We found no cancer control benefit from heated chemotherapy instillations over room-temperature chemotherapy. Adverse events following heated chemotherapy were low grade and short-lived, although these patients were less likely to complete their treatment
Genome-wide signatures of convergent evolution in echolocating mammals
Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes(1-3). However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures(4,5). Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level(6-9). Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution(9,10) although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised
Just-in-Time Information Improved Decision-Making in Primary Care: A Randomized Controlled Trial
BACKGROUND: The "Just-in-time Information" (JIT) librarian consultation service was designed to provide rapid information to answer primary care clinical questions during patient hours. This study evaluated whether information provided by librarians to answer clinical questions positively impacted time, decision-making, cost savings and satisfaction. METHODS AND FINDING: A randomized controlled trial (RCT) was conducted between October 2005 and April 2006. A total of 1,889 questions were sent to the service by 88 participants. The object of the randomization was a clinical question. Each participant had clinical questions randomly allocated to both intervention (librarian information) and control (no librarian information) groups. Participants were trained to send clinical questions via a hand-held device. The impact of the information provided by the service (or not provided by the service), additional resources and time required for both groups was assessed using a survey sent 24 hours after a question was submitted. The average time for JIT librarians to respond to all questions was 13.68 minutes/question (95% CI, 13.38 to 13.98). The average time for participants to respond their control questions was 20.29 minutes/question (95% CI, 18.72 to 21.86). Using an impact assessment scale rating cognitive impact, participants rated 62.9% of information provided to intervention group questions as having a highly positive cognitive impact. They rated 14.8% of their own answers to control question as having a highly positive cognitive impact, 44.9% has having a negative cognitive impact, and 24.8% with no cognitive impact at all. In an exit survey measuring satisfaction, 86% (62/72 responses) of participants scored the service as having a positive impact on care and 72% (52/72) indicated that they would use the service frequently if it were continued. CONCLUSIONS: In this study, providing timely information to clinical questions had a highly positive impact on decision-making and a high approval rating from participants. Using a librarian to respond to clinical questions may allow primary care professionals to have more time in their day, thus potentially increasing patient access to care. Such services may reduce costs through decreasing the need for referrals, further tests, and other courses of action. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN96823810
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
The Bohr radius is a space-like separation between the proton and electron in
the hydrogen atom. According to the Copenhagen school of quantum mechanics, the
proton is sitting in the absolute Lorentz frame. If this hydrogen atom is
observed from a different Lorentz frame, there is a time-like separation
linearly mixed with the Bohr radius. Indeed, the time-separation is one of the
essential variables in high-energy hadronic physics where the hadron is a bound
state of the quarks, while thoroughly hidden in the present form of quantum
mechanics. It will be concluded that this variable is hidden in Feynman's rest
of the universe. It is noted first that Feynman's Lorentz-invariant
differential equation for the bound-state quarks has a set of solutions which
describe all essential features of hadronic physics. These solutions explicitly
depend on the time separation between the quarks. This set also forms the
mathematical basis for two-mode squeezed states in quantum optics, where both
photons are observable, but one of them can be treated a variable hidden in the
rest of the universe. The physics of this two-mode state can then be translated
into the time-separation variable in the quark model. As in the case of the
un-observed photon, the hidden time-separation variable manifests itself as an
increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the
Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be
published in one of the AIP Conference Proceedings serie
- …