20 research outputs found
Classifying and scoring of molecules with the NGN: new datasets, significance tests, and generalization
<p>Abstract</p> <p/> <p>This paper demonstrates how a Neural Grammar Network learns to classify and score molecules for a variety of tasks in chemistry and toxicology. In addition to a more detailed analysis on datasets previously studied, we introduce three new datasets (BBB, FXa, and toxicology) to show the generality of the approach. A new experimental methodology is developed and applied to both the new datasets as well as previously studied datasets. This methodology is rigorous and statistically grounded, and ultimately culminates in a Wilcoxon significance test that proves the effectiveness of the system. We further include a complete generalization of the specific technique to arbitrary grammars and datasets using a mathematical abstraction that allows researchers in different domains to apply the method to their own work.</p> <p>Background</p> <p>Our work can be viewed as an alternative to existing methods to solve the quantitative structure-activity relationship (QSAR) problem. To this end, we review a number approaches both from a methodological and also a performance perspective. In addition to these approaches, we also examined a number of chemical properties that can be used by generic classifier systems, such as feed-forward artificial neural networks. In studying these approaches, we identified a set of interesting benchmark problem sets to which many of the above approaches had been applied. These included: ACE, AChE, AR, BBB, BZR, Cox2, DHFR, ER, FXa, GPB, Therm, and Thr. Finally, we developed our own benchmark set by collecting data on toxicology.</p> <p>Results</p> <p>Our results show that our system performs better than, or comparatively to, the existing methods over a broad range of problem types. Our method does not require the expert knowledge that is necessary to apply the other methods to novel problems.</p> <p>Conclusions</p> <p>We conclude that our success is due to the ability of our system to: 1) encode molecules losslessly before presentation to the learning system, and 2) leverage the design of molecular description languages to facilitate the identification of relevant structural attributes of the molecules over different problem domains.</p
The EDKB: an established knowledge base for endocrine disrupting chemicals
<p>Abstract</p> <p>Background</p> <p>Endocrine disruptors (EDs) and their broad range of potential adverse effects in humans and other animals have been a concern for nearly two decades. Many putative EDs are widely used in commercial products regulated by the Food and Drug Administration (FDA) such as food packaging materials, ingredients of cosmetics, medical and dental devices, and drugs. The Endocrine Disruptor Knowledge Base (EDKB) project was initiated in the mid 1990’s by the FDA as a resource for the study of EDs. The EDKB database, a component of the project, contains data across multiple assay types for chemicals across a broad structural diversity. This paper demonstrates the utility of EDKB database, an integral part of the EDKB project, for understanding and prioritizing EDs for testing.</p> <p>Results</p> <p>The EDKB database currently contains 3,257 records of over 1,800 EDs from different assays including estrogen receptor binding, androgen receptor binding, uterotropic activity, cell proliferation, and reporter gene assays. Information for each compound such as chemical structure, assay type, potency, etc. is organized to enable efficient searching. A user-friendly interface provides rapid navigation, Boolean searches on EDs, and both spreadsheet and graphical displays for viewing results. The search engine implemented in the EDKB database enables searching by one or more of the following fields: chemical structure (including exact search and similarity search), name, molecular formula, CAS registration number, experiment source, molecular weight, etc. The data can be cross-linked to other publicly available and related databases including TOXNET, Cactus, ChemIDplus, ChemACX, Chem Finder, and NCI DTP. </p> <p>Conclusion</p> <p>The EDKB database enables scientists and regulatory reviewers to quickly access ED data from multiple assays for specific or similar compounds. The data have been used to categorize chemicals according to potential risks for endocrine activity, thus providing a basis for prioritizing chemicals for more definitive but expensive testing. The EDKB database is publicly available and can be found online at <url>http://edkb.fda.gov/webstart/edkb/index.html</url>.</p> <p><b>Disclaimer:</b><it>The views presented in this article do not necessarily reflect those of the US Food and Drug Administration.</it></p
Making Informed Choices about Microarray Data Analysis
This article describes the typical stages in the analysis of microarray data for non-specialist researchers in systems biology and medicine. Particular attention is paid to significant data analysis issues that are commonly encountered among practitioners, some of which need wider airing. The issues addressed include experimental design, quality assessment, normalization, and summarization of multiple-probe data. This article is based on the ISMB 2008 tutorial on microarray data analysis. An expanded version of the material in this article and the slides from the tutorial can be found at http://www.people.vcu.edu/~mreimers/OGMDA/index.html
Identifying Fishes through DNA Barcodes and Microarrays
Background: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of ‘‘DNA barcoding’’ and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the ‘‘position of label’’ effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (.90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products
Beyond the brain-Peripheral kisspeptin signaling is essential for promoting endometrial gland development and function
Uterine growth and endometrial gland formation (adenogenesis) and function, are essential for fertility and are controlled by estrogens and other regulators, whose nature and physiological relevance are yet to be elucidated. Kisspeptin, which signals via Kiss1r, is essential for fertility, primarily through its central control of the hypothalamic-pituitary-ovarian axis, but also likely through peripheral actions. Using genetically modified mice, we addressed the contributions of central and peripheral kisspeptin signaling in regulating uterine growth and adenogenesis. Global ablation of Kiss1 or Kiss1r dramatically suppressed uterine growth and almost fully prevented adenogenesis. However, while uterine growth was fully rescued by E2 treatment of Kiss1(−/−) mice and by genetic restoration of kisspeptin signaling in GnRH neurons in Kiss1r(−/−) mice, functional adenogenesis was only marginally restored. Thus, while uterine growth is largely dependent on ovarian E2-output via central kisspeptin signaling, peripheral kisspeptin signaling is indispensable for endometrial adenogenesis and function, essential aspects of reproductive competence