20 research outputs found

    Biodegradation of phenoxyacetic acid in soil by Pseudomonas putida PP0301(pR0103), a constitutive degrader of 2, 4–dichlorophenoxyacetate

    No full text
    The efficacy of using genetically engineered microbes (GEMs) to degrade recalcitrant environmental toxicants was demonstrated by the application of Pseudomonas putida PP0301(pR0103) to an Oregon agricultural soil amended with 500 u.g/g of a model xenobiotic, phenoxyacetic acid (PAA). P. putida PP0301(pR0103) is a constitutive degrader of 2, 4–dichlorophenoxyacetate (2, 4–D) and is also active on the non–inducing substrate, PAA. PAA is the parental compound of 2, 4–dichlorophenoxyacetic acid (2, 4–D) and whilst the indigenous soil microbiota degraded 500 ng/g 2, 4–D to less than 10 J–g/g, PAA degradation was insignificant during a 40–day period. No significant degradation of PAA occurred in soil inoculated with the parental strain P. putida PP0301 or the inducible 2, 4–D degrader P. putida PP0301(pR0101). Moreover, co–amendment of soil with 2, 4–D and PAA induced the microbiota to degrade 2, 4–D; PAA was not degraded. P. putida PP0301–(pR0103) mineralized 500–Μg/g PAA to trace levels within 13 days and relieved phytotoxicity of PAA to Raphanus sativus (radish) seeds with 100% germination in the presence of the GEM and 7% germination in its absence. In unamended soil, survival of the plasmid–free parental strain P. putida PP0301 was similar to the survival of the GEM strain P. putida PP0301(pR0103). However, in PAA amended soil, survival of the parent strain was over 10 000–fold lower (< 3 colony forming units per gram of soil) than survival of the GEM strain after 39 days.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75471/1/j.1365-294X.1992.tb00160.x.pd
    corecore