16 research outputs found

    Insights from Amphioxus into the Evolution of Vertebrate Cartilage

    Get PDF
    Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm

    Fluorescence studies on new potential antitumoral benzothienopyran-1-ones in solution and in liposomes

    Get PDF
    Fluorescence properties of four new potential antitumoral compounds, 3-arylbenzothieno[2,3-c]pyran-1-ones, were studied in solution and in lipid membranes of dipalmitoyl phosphatidylcholine (DPPC), egg yolk phosphatidylcholine (Egg-PC) and dioctadecyldimethylammonium bromide (DODAB). The 3-(4-methoxyphenyl)benzothieno[2,3-c]pyran-1-one (1c) exhibits the higher fluorescence quantum yields in all solvents studied. All compounds present a solvent sensitive emission, with significant red shifts in polar solvents for the methoxylated compounds. The results point to an ICT character of the excited state, more pronounced for compound 1c. Fluorescence (steady-state) anisotropy measurements of the compounds incorporated in liposomes of DPPC, DODAB and Egg-PC indicate that all compounds have two different locations, one due to a deep penetration in the lipid membrane and another corresponding to a more hydrated environment. In general, the methoxylated compounds prefer hydrated environments inside the liposomes. The 3-(4- fluorophenyl)benzothieno[2,3-c]pyran-1-one (1a) clearly prefers a hydrated environment, with some molecules located at the outer part of the liposome interface. On the contrary, the preferential location of 3-(2-fluorophenyl)benzothieno[2,3-c]pyran-1-one (1b) is in the region of lipid hydrophobic tails. Compounds with a planar geometry (1a and 1c) have higher mobility in the lipid membranes when phase transition occurs.Portugal and FEDER (Fundo Europeu de Desenvolvimento Regional), for financial support through Centro de Física (CFUM) and Centro de Química (CQ-UM) of University of Minho and through the Project PTDC/QUI/81238/2006. M.S.D. Carvalho and R.C. Calhelha acknowledge FCT for their PhD grants SFRH/BD/47052/2008 and SFRH/BD/29274/2006, respectively.Fundação para a Ciência e a Tecnologia (FCT

    A New Mechanistic Scenario for the Origin and Evolution of Vertebrate Cartilage

    Get PDF
    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate “new head”. Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates

    Ultrafast dynamics in the power stroke of a molecular rotary motor

    Get PDF
    Light-driven molecular motors convert light into mechanical energy through excited-state reactions. Unidirectional rotary molecular motors based on chiral overcrowded alkenes operate through consecutive photochemical and thermal steps. The thermal (helix inverting) step has been optimized successfully through variations in molecular structure, but much less is known about the photochemical step, which provides power to the motor. Ultimately, controlling the efficiency of molecular motors requires a detailed picture of the molecular dynamics on the excited-state potential energy surface. Here, we characterize the primary events that follow photon absorption by a unidirectional molecular motor using ultrafast fluorescence up-conversion measurements with sub 50 fs time resolution. We observe an extraordinarily fast initial relaxation out of the Franck-Condon region that suggests a barrierless reaction coordinate. This fast molecular motion is shown to be accompanied by the excitation of coherent excited-state structural motion. The implications of these observations for manipulating motor efficiency are discussed
    corecore