17 research outputs found
Correlation of omega-3 levels in serum phospholipid from 2053 human blood samples with key fatty acid ratios
<p>Abstract</p> <p>Background</p> <p>This research was conducted to explore the relationships between the levels of omega-3 fatty acids in serum phospholipid and key fatty acid ratios including potential cut-offs for risk factor assessment with respect to coronary heart disease and fatal ischemic heart disease.</p> <p>Methods</p> <p>Blood samples (n = 2053) were obtained from free-living subjects in North America and processed for determining the levels of total fatty acids in serum phospholipid as omega-3 fatty acids including EPA (eicosapentaenoic acid, 20:5 n-3) and DHA (docosahexaenoic acid, 22:6 n-3) by combined thin-layer and gas-liquid chromatographic analyses. The omega-3 levels were correlated with selected omega-6: omega-3 ratios including AA (arachidonic acid, 20:4n-6): EPA and AA:(EPA+DHA). Based on previously-published levels of omega-3 fatty acids considered to be in a 'lower risk' category for heart disease and related fatality, 'lower risk' categories for selected fatty acid ratios were estimated.</p> <p>Results</p> <p>Strong inverse correlations between the summed total of omega-3 fatty acids in serum phospholipid and all four ratios (omega-6:omega-3 (n-6:n-3), AA:EPA, AA:DHA, and AA:(EPA+DHA)) were found with the most potent correlation being with the omega-6:omega-3 ratio (R<sup>2 </sup>= 0.96). The strongest inverse relation for the EPA+DHA levels in serum phospholipid was found with the omega-6: omega-3 ratio (R<sup>2 </sup>= 0.94) followed closely by the AA:(EPA+DHA) ratio at R<sup>2 </sup>= 0.88. It was estimated that 95% of the subjects would be in the 'lower risk' category for coronary heart disease (based on total omega-3 ≥ 7.2%) with omega-6:omega-3 ratios <4.5 and AA:(EPA+DHA) ratios <1.4. The corresponding ratio cut-offs for a 'lower risk' category for fatal ischemic heart disease (EPA+DHA ≥ 4.6%) were estimated at < 5.8 and < 2.1, respectively.</p> <p>Conclusions</p> <p>Strong inverse correlations between the levels of omega-3 fatty acids in serum (or plasma) phospholipid and omega-6: omega-3 ratios are apparent based on this large database of 2053 samples. Certain fatty acid ratios may aid in cardiovascular disease-related risk assessment if/when complete profiles are not available.</p
Applying two-photon excitation fluorescence lifetime imaging microscopy to study photosynthesis in plant leaves
This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860Â nm excitation pulses, fluorescence lifetimes can be measured in leaves of Arabidopsis thaliana and Alocasia wentii under excitation-annihilation free conditions, both for the F0- and the Fm-state. The corresponding average lifetimes are ~250Â ps and ~1.5Â ns, respectively, similar to those of isolated chloroplasts. These values appear to be the same for chloroplasts in the top, middle, and bottom layer of the leaves. With the spatial resolution of ~500Â nm in the focal (xy) plane and 2Â ÎĽm in the z direction, it appears to be impossible to fully resolve the grana stacks and stroma lamellae, but variations in the fluorescence lifetimes, and thus of the composition on a pixel-to-pixel base can be observed
Periodic trends and easy estimation of relative stabilities in 11-vertex nido-p-block-heteroboranes and -borates
Density functional theory computations were carried out for 11-vertex nido-p-block-hetero(carba)boranes and -borates containing silicon, germanium, tin, arsenic, antimony, sulfur, selenium and tellurium heteroatoms. A set of quantitative values called “estimated energy penalties” was derived by comparing the energies of two reference structures that differ with respect to one structural feature only. These energy penalties behave additively, i.e., they allow us to reproduce the DFT-computed relative stabilities of 11-vertex nido-heteroboranes in general with good accuracy and to predict the thermodynamic stabilities of unknown structures easily. Energy penalties for neighboring heteroatoms (HetHet and HetHet′) decrease down the group and increase along the period (indirectly proportional to covalent radii). Energy penalties for a five- rather than four-coordinate heteroatom, [Het5k(1) and Het5k(2)], generally, increase down group 14 but decrease down group 16, while there are mixed trends for group 15 heteroatoms. The sum of HetHet′ energy penalties results in different but easily predictable open-face heteroatom positions in the thermodynamically most stable mixed heterocarbaboranes and -borates with more than two heteroatoms
Influence of dietary fat on the pharmacodynamics of propafenone in isolated, perfused rabbit hearts.
The potato late blight pathogen Phytophthora infestans and other pathogenic oomycota
Potato late blight, caused by a member of the
Oomycota, Phytophthora infestans (Mont.) De
Bary, is one of the most important and devastating
diseases of potato (Solanum tuberosum). The
pathogen attacks both foliage and tubers, and
spreads rapidly through host tissues, thereby causing a destructive necrosis. P. infestans is a
hemibiotrophic pathogen with a rather narrow
range of hosts, all of them members of the
Solanaceae. The crop plants, potato and tomato
(Lycopersicon esculentum), are the economically
most important hosts. The first late blight epidemic
in Europe in 1845 had disastrous effects
on potato production. P. infestans spread over
Europe within 1 year and was
found in most potato-growing areas of the world
soon thereafter. In Ireland the potato crop was
destroyed in two successive years, leading to a
famine. As a consequence, about one and a half
million people died and another million emigrated,
mainly to the United States. De Bary described the life
cycle of the potato late blight pathogen and
named it Phytophthora ("plant destroyer")
infestans