459 research outputs found
Fabrication and Properties of Ag-nanoparticles Embedded Amorphous Carbon Nanowire/CNT Heterostructures
Carbon nanotubes were subjected to doping with an energetic Ag ion beam, and the carbon nanotubes on the top of the array were transformed into amorphous carbon nanowires with embedded Ag-nanoparticles. The field emission characteristics of these nanowires were investigated. The minimum turn-on and threshold fields were 0.68 and 1.09 V/μm, respectively, which were lower than those of the as-grown carbon nanotubes. This was probably because Ag-nanoparticles embedded in the carbon nanowires reduced the effective work function from 4.59 to 4.23 eV. Large doping amounts produced serious structural damage at the top of the nanowires and impaired the field emission characteristics
Clinical, Virological and Immunological Features from Patients Infected with Re-Emergent Avian-Origin Human H7N9 Influenza Disease of Varying Severity in Guangdong Province
The second wave of avian influenza H7N9 virus outbreak in humans spread to the Guangdong province of China by August of 2013 and this virus is now endemic in poultry in this region.Background
The second wave of avian influenza H7N9 virus outbreak in humans spread to the Guangdong province of China by August of 2013 and this virus is now endemic in poultry in this region.
Methods
Five patients with H7N9 virus infection admitted to our hospital during August 2013 to February 2014 were intensively investigated. Viral load in the respiratory tract was determined by quantitative polymerase chain reaction (Q-PCR) and cytokine levels were measured by bead-based flow cytometery.
Results
Four patients survived and one died. Viral load in different clinical specimens was correlated with cytokine levels in plasma and broncho-alveolar fluid (BALF), therapeutic modalities used and clinical outcome. Intravenous zanamivir appeared to be better than peramivir as salvage therapy in patients who failed to respond to oseltamivir. Higher and more prolonged viral load was found in the sputum or endotracheal aspirates compared to throat swabs. Upregulation of proinflammatory cytokines IP-10, MCP-1, MIG, MIP-1α/β, IL-1β and IL-8 was found in the plasma and BALF samples. The levels of cytokines in the plasma and viral load were correlated with disease severity. Reactivation of herpes simplex virus type 1(HSV-1) was found in three out of five patients (60%).
Conclusion
Expectorated sputum or endotracheal aspirate specimens are preferable to throat swabs for detecting and monitoring H7N9 virus. Severity of the disease was correlated to the viral load in the respiratory tract as well as the extents of cytokinemia. Reactivation of HSV-1 may contribute to clinical outcome.published_or_final_versio
Synthesis and Characterization of ZnO Nanowire–CdO Composite Nanostructures
ZnO nanowire–CdO composite nanostructures were fabricated by a simple two-step process involving ammonia solution method and thermal evaporation. First, ZnO nanowires (NWs) were grown on Si substrate by aqueous ammonia solution method and then CdO was deposited on these ZnO NWs by thermal evaporation of cadmium chloride powder. The surface morphology and structure of the synthesized composite structures were analyzed by scanning electron microscopy, X-ray diffraction and transmission electron microscopy. The optical absorbance spectrum showed that ZnO NW–CdO composites can absorb light up to 550 nm. The photoluminescence spectrum of the composite structure does not show any CdO-related emission peak and also there was no band gap modification of ZnO due to CdO. The photocurrent measurements showed that ZnO NW–CdO composite structures have better photocurrent when compared with the bare ZnO NWs
Whole Genome PCR Scanning Reveals the Syntenic Genome Structure of Toxigenic Vibrio cholerae Strains in the O1/O139 Population
Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning) method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH) to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE) analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+) strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes
Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes on Substrate by Europium Oxide
In this paper, we have demonstrated that europium oxide (Eu2O3) is a new type of active catalyst for single-walled carbon nanotubes (SWNTs) growth under suitable conditions. Both random SWNT networks and horizontally aligned SWNT arrays are efficiently grown on silicon wafers. The density of the SWNT arrays can be altered by the CVD conditions. This result further provides the experimental evidence that the efficient catalyst for SWNT growth is more size dependent than the catalysts themselves. Furthermore, the SWNTs from europium sesquioxides have compatibly higher quality than that from Fe/Mo catalyst. More importantly, over 80% of the nanotubes from Eu2O3 are semiconducting SWNTs (s-SWNTs), indicating the preferential growth of s-SWNTs from Eu2O3. This new finding could open a way for selective growth of s-SWNTs, which can be used as high-current nanoFETs and sensors. Moreover, the successful growth of SWNTs by Eu2O3 catalyst provides new experimental information for understanding the preferential growth of s-SWNTs from Eu2O3, which may be helpful for their controllable synthesis
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
A Myb Transcription Factor of Phytophthora sojae, Regulated by MAP Kinase PsSAK1, Is Required for Zoospore Development
PsSAK1, a mitogen-activated protein (MAP) kinase from Phytophthora sojae, plays an important role in host infection and zoospore viability. However, the downstream mechanism of PsSAK1 remains unclear. In this study, the 3'-tag digital gene expression (DGE) profiling method was applied to sequence the global transcriptional sequence of PsSAK1-silenced mutants during the cysts stage and 1.5 h after inoculation onto susceptible soybean leaf tissues. Compared with the gene expression levels of the recipient P. sojae strain, several candidates of Myb family were differentially expressed (up or down) in response to the loss of PsSAK1, including of a R2R3-type Myb transcription factor, PsMYB1. qRT-PCR indicated that the transcriptional level of PsMYB1 decreased due to PsSAK1 silencing. The transcriptional level of PsMYB1 increased during sporulating hyphae, in germinated cysts, and early infection. Silencing of PsMYB1 results in three phenotypes: a) no cleavage of the cytoplasm into uninucleate zoospores or release of normal zoospores, b) direct germination of sporangia, and c) afunction in zoospore-mediated plant infection. Our data indicate that the PsMYB1 transcription factor functions downstream of MAP kinase PsSAK1 and is required for zoospore development of P. sojae
Comparison of hormonal receptor and HER-2 status between breast primary tumours and relapsing tumours: clinical implications of progesterone receptor loss
Differences in hormone receptor and HER-2 status between primary tumour and corresponding relapse could have a substantial impact on clinical management of patients. The aim of this study was to evaluate change in expression of hormone receptors and HER-2 status between primary tumour and corresponding local recurrence or distant metastasis. We analysed 140 primary tumours and related recurrent or metastatic samples. Hormone receptors status was evaluated by immunohistochemistry, while HER-2 status by immunohistochemistry and silver in situ hybridisation. A change in HER-2 was rare; 3.7% of cases by immunohistochemistry and only 0.7% by silver in situ hybridisation analysis. A change in estrogen and progesterone receptors was seen in 6.4% and 21.4% of cases, respectively. Estrogen receptor change was not affected by adjuvant therapy, whereas progesterone receptor was influenced by adjuvant chemotherapy associated to hormone therapy (P = 0.0005). A change in progesterone receptor was more frequent in distant metastases than in local recurrences (P = 0.03). In the setting of estrogen receptor positive tumours, patients with progesterone receptor loss in local recurrence had a statistically significant lower median metastasis free survival compared to others patients; progesterone receptor positive, 112 months; progesterone receptor negative, 24 months (P = 0.005). A change between primary tumour and corresponding relapse is frequent for progesterone receptor, infrequent for estrogen receptor and rare for HER-2. In cases with changes in HER-2, it is worthwhile reassessing HER-2 status with both immunohistochemistry and in situ hybridisation analysis. Progesterone receptor loss seems to be influenced by therapy and to correlate with a worse prognosis
- …