36 research outputs found

    The G1613A Mutation in the HBV Genome Affects HBeAg Expression and Viral Replication through Altered Core Promoter Activity

    Get PDF
    Infection of hepatitis B virus (HBV) causes acute and chronic hepatitis and is closely associated with the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we demonstrated that the G1613A mutation in the HBV negative regulatory element (NRE) is a hotspot mutation in HCC patients. In this study, we further investigated the functional consequences of this mutation in the context of the full length HBV genome and its replication. We showed that the G1613A mutation significantly suppresses the secretion of e antigen (HBeAg) and enhances the synthesis of viral DNA, which is in consistence to our clinical result that the G1613A mutation associates with high viral load in chronic HBV carriers. To further investigate the molecular mechanism of the mutation, we performed the electrophoretic mobility shift assay with the recombinant RFX1 protein, a trans-activator that was shown to interact with the NRE of HBV. Intriguingly, RFX1 binds to the G1613A mutant with higher affinity than the wild-type sequence, indicating that the mutation possesses the trans-activating effect to the core promoter via NRE. The trans-activating effect was further validated by the enhancement of the core promoter activity after overexpression of RFX1 in liver cell line. In summary, our results suggest the functional consequences of the hotspot G1613A mutation found in HBV. We also provide a possible molecular mechanism of this hotspot mutation to the increased viral load of HBV carriers, which increases the risk to HCC

    Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    Get PDF
    published_or_final_versio

    The muon system of the Daya Bay Reactor antineutrino experiment

    Get PDF
    postprin

    Search for a Light Sterile Neutrino at Daya Bay

    Get PDF
    published_or_final_versio

    New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay

    Get PDF

    Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Get PDF

    CHROMATIN SIGNATURES IN MULTIPOTENT HUMAN HEMATOPOIETIC STEM CELLS INDICATE THE FATE OF BIVALENT GENES DURING DIFFERENTIATION

    No full text
    Histone modifications have been implicated in stem cell maintenance and differentiation. We have analyzed genome-wide changes in gene expression and histone modifications during differentiation of multipotent human primary hematopoietic stem cells/progenitor cells (HSCs/HPCs) into erythrocyte precursors. Our data indicate that H3K4me1, H3K9me1, and H3K27me1 associate with enhancers of differentiation genes prior to their activation and correlate with basal expression, suggesting that these monomethylations are involved in the maintenance of activation potential required for differentiation. In addition, although the majority of genes associated with both H3K4me3 and H3K27me3 in HSCs/HPCs become silent and lose H3K4me3 after differentiation, those that lose H3K27me3 and become activated after differentiation are associated with increased levels of H2A.Z, H3K4me1, H3K9me1, H4K20me1, and RNA polymerase 11 in HSCs/HPCs. Thus, our data suggest that gene expression changes during differentiation are programmed by chromatin modifications present at the HSC/HPC stage and provide a resource for enhancer and promoter identification.X11401sciescopu

    Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    No full text
    Daozhen Chen,1,3,* Qiusha Tang,2,* Xiangdong Li,3,* Xiaojin Zhou,1 Jia Zang,1 Wen-qun Xue,1 Jing-ying Xiang,1 Cai-qin Guo11Central Laboratory, Wuxi Hospital for Matemaland Child Health Care Affiliated Medical School of Nanjing, Jiangsu Province; 2Department of Pathology and Pathophysiology, Medical College, Southeast University, Jiangsu Province; 3The People’s Hospital of Aheqi County, Xinjiang, China *These authors contributed equally to this workBackground: The objective of this study was to evaluate the synthesis and biocompatibility of Fe3O4 nanoparticles and investigate their therapeutic effects when combined with magnetic fluid hyperthermia on cultured MCF-7 cancer cells.Methods: Magnetic Fe3O4 nanoparticles were prepared using a coprecipitation method. The appearance, structure, phase composition, functional groups, surface charge, magnetic susceptibility, and release in vitro were characterized by transmission electron microscopy, x-ray diffraction, scanning electron microscopy-energy dispersive x-ray spectroscopy, and a vibrating sample magnetometer. Blood toxicity, in vitro toxicity, and genotoxicity were investigated. Therapeutic effects were evaluated by MTT [3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide] and flow cytometry assays.Results: Transmission electron microscopy revealed that the shapes of the Fe3O4 nanoparticles were approximately spherical, with diameters of about 26.1 ± 5.2 nm. Only the spinel phase was indicated in a comparison of the x-ray diffraction data with Joint Corporation of Powder Diffraction Standards (JCPDS) X-ray powder diffraction files. The O-to-Fe ratio of the Fe3O4 was determined by scanning electron microscopy-energy dispersive x-ray spectroscopy elemental analysis, and approximated pure Fe3O4. The vibrating sample magnetometer hysteresis loop suggested that the Fe3O4 nanoparticles were superparamagnetic at room temperature. MTT experiments showed that the toxicity of the material in mouse fibroblast (L-929) cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50) was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7 cell proliferation, and its inhibitory effect was dose-dependent according to the Fe3O4 nano magnetofluid concentration.Conclusion: The Fe3O4 nanoparticles prepared in this study have good biocompatibility and are suitable for further application in tumor hyperthermia.Keywords: characterization, biocompatibility, Fe3O4, magnetic nanoparticles, hyperthermi
    corecore