5 research outputs found

    Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation

    Get PDF
    Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector

    Surround sound system and method therefor

    Get PDF
    A surround sound system comprises a receiver (301) for receiving a multichannel spatial signal that comprises at least one surround channel. A directional ultrasound transducer (305) is used for emitting ultrasound towards a surface to reach a listening position (111) via a reflection of the surface. The ultrasound signal may specifically reach the listening position from the side, above or behind of a nominal listener. A first drive unit (303) generates a drive signal for the directional ultrasound transducer (301) from the surround channel. The use of an ultrasound transducer for providing the surround sound signal provides an improved spatial experience while allowing the speaker to be located e.g. to the front of the user.; In particular, an ultrasound beam is much narrower and well defined than conventional audio beams and can accordingly better be directed to provide the desired reflections. In some scenarios, the ultrasound transducer (305) may be supplemented by an audio range loudspeaker (309)

    Device for and a method of processing data

    Get PDF
    A device (100) for processing data, the device (100) comprising a detection unit (110) adapted for detecting individual reproduction modes indicative of a manner of reproducing the data separately for each of a plurality of human users, and a processing unit (120) adapted for processing the data to thereby generate reproducible data separately for each of the plurality of human users in accordance with the detected individual reproduction modes
    corecore