155 research outputs found

    Rapid Assembly of Multiple-Exon cDNA Directly from Genomic DNA

    Get PDF
    Backgrouud. Polymerase chain reaction (PCR) is extensively applied in gene cloning. But due to the existence of introns, low copy number of particular genes and high complexity of the eukaryotic genome, it is usually impossible to amplify and clone a gene as a full-length sequence directly from the genome by ordinary PCR based techniques. Cloning of cDNA instead of genomic DNA involves multiple steps: harvest of tissues that express the gene of interest, RNA isolation, cDNA synthesis (reverse transcription), and PCR amplification. To simplify the cloning procedures and avoid the problems caused by ubiquitously distributed durable RNases, we have developed a novel strategy allowing the cloning of any cDNA or open reading frame (ORF) with wild type sequence in any spliced form from a single genomic DNA preparation. Methodology. Our Genomic DNA Splicing technique contains the following steps: first, all exons of the gene are amplified from a genomic DNA preparation, using software-optimized, highly efficient primers residing in flanking introns. Next, the tissue-specific exon sequences are assembled into one full-length sequence by overlapping PCR with deliberately designed primers located at the splicing sites. Finally, software-optimized outmost primers are exploited for efficient amplification of the assembled full-length products. Conclusions. The Genomic DNA Splicing protocol avoids RNA preparation and reverse transcription steps, and the entire assembly process can be finished within hours, Since genamic DNA is more stable than RNA, it may be a more practical cloning strategy for many genes, especially the ones that are very large and difficult to generate a full length cDNA using oligo-dT primed reverse transcription. With this technique, we successfully doned the full-length wild type coding sequence of human polymeric immunoglobulin receptor, which is 2295 bp in length and composed of 10 exons. © 2007 An et al.published_or_final_versio

    Probing Evolutionary Repeatability: Neutral and Double Changes and the Predictability of Evolutionary Adaptation

    Get PDF
    The question of how organisms adapt is among the most fundamental in evolutionary biology. Two recent studies investigated the evolution of Escherichia coli in response to challenge with the antibiotic cefotaxime. Studying five mutations in the beta-lactamase gene that together confer significant antibiotic resistance, the authors showed a complex fitness landscape that greatly constrained the identity and order of intermediates leading from the initial wildtype genotype to the final resistant genotype. Out of 18 billion possible orders of single mutations leading from non-resistant to fully-resistant form, they found that only 27 (1.5x10(-7)%) pathways were characterized by consistently increasing resistance, thus only a tiny fraction of possible paths are accessible by positive selection. I further explore these data in several ways.Allowing neutral changes (those that do not affect resistance) increases the number of accessible pathways considerably, from 27 to 629. Allowing multiple simultaneous mutations also greatly increases the number of accessible pathways. Allowing a single case of double mutation to occur along a pathway increases the number of pathways from 27 to 259, and allowing arbitrarily many pairs of simultaneous changes increases the number of possible pathways by more than 100 fold, to 4800. I introduce the metric 'repeatability,' the probability that two random trials will proceed via the exact same pathway. In general, I find that while the total number of accessible pathways is dramatically affected by allowing neutral or double mutations, the overall evolutionary repeatability is generally much less affected.These results probe the conceivable pathways available to evolution. Even when many of the assumptions of the analysis of Weinreich et al. (2006) are relaxed, I find that evolution to more highly cefotaxime resistant beta-lactamase proteins is still highly repeatable

    A One Pot, One Step, Precision Cloning Method with High Throughput Capability

    Get PDF
    Current cloning technologies based on site-specific recombination are efficient, simple to use, and flexible, but have the drawback of leaving recombination site sequences in the final construct, adding an extra 8 to 13 amino acids to the expressed protein. We have devised a simple and rapid subcloning strategy to transfer any DNA fragment of interest from an entry clone into an expression vector, without this shortcoming. The strategy is based on the use of type IIs restriction enzymes, which cut outside of their recognition sequence. With proper design of the cleavage sites, two fragments cut by type IIs restriction enzymes can be ligated into a product lacking the original restriction site. Based on this property, a cloning strategy called ‘Golden Gate’ cloning was devised that allows to obtain in one tube and one step close to one hundred percent correct recombinant plasmids after just a 5 minute restriction-ligation. This method is therefore as efficient as currently used recombination-based cloning technologies but yields recombinant plasmids that do not contain unwanted sequences in the final construct, thus providing precision for this fundamental process of genetic manipulation

    Development and Functional Analysis of Novel Genetic Promoters Using DNA Shuffling, Hybridization and a Combination Thereof

    Get PDF
    BACKGROUND: Development of novel synthetic promoters with enhanced regulatory activity is of great value for a diverse range of plant biotechnology applications. METHODOLOGY: Using the Figwort mosaic virus full-length transcript promoter (F) and the sub-genomic transcript promoter (FS) sequences, we generated two single shuffled promoter libraries (LssF and LssFS), two multiple shuffled promoter libraries (LmsFS-F and LmsF-FS), two hybrid promoters (FuasFScp and FSuasFcp) and two hybrid-shuffled promoter libraries (LhsFuasFScp and LhsFSuasFcp). Transient expression activities of approximately 50 shuffled promoter clones from each of these libraries were assayed in tobacco (Nicotiana tabacum cv. Xanthi) protoplasts. It was observed that most of the shuffled promoters showed reduced activity compared to the two parent promoters (F and FS) and the CaMV35S promoter. In silico studies (computer simulated analyses) revealed that the reduced promoter activities of the shuffled promoters could be due to their higher helical stability. On the contrary, the hybrid promoters FuasFScp and FSuasFcp showed enhanced activities compared to F, FS and CaMV 35S in both transient and transgenic Nicotiana tabacum and Arabidopsis plants. Northern-blot and qRT-PCR data revealed a positive correlation between transcription and enzymatic activity in transgenic tobacco plants expressing hybrid promoters. Histochemical/X-gluc staining of whole transgenic seedlings/tissue-sections and fluorescence images of ImaGene Green™ treated roots and stems expressing the GUS reporter gene under the control of the FuasFScp and FSuasFcp promoters also support the above findings. Furthermore, protein extracts made from protoplasts expressing the human defensin (HNP-1) gene driven by hybrid promoters showed enhanced antibacterial activity compared to the CaMV35S promoter. SIGNIFICANCE/CONCLUSION: Both shuffled and hybrid promoters developed in the present study can be used as molecular tools to study the regulation of ectopic gene expression in plants

    Cross Priming Amplification: Mechanism and Optimization for Isothermal DNA Amplification

    Get PDF
    CPA is a class of isothermal amplification reactions that is carried out by a strand displacement DNA polymerase and does not require an initial denaturation step or the addition of a nicking enzyme. At the assay temperature of 63°C, the formation of a primer-template hybrid at transient, spontaneous denaturation bubbles in the DNA template is favored over re-annealing of the template strands by the high concentration of primer relative to template DNA. Strand displacement is encouraged by the annealing of cross primers with 5′ ends that are not complementary to the template strand and the binding of a displacement primer upstream of the crossing primer. The resulting exponential amplification of target DNA is highly specific and highly sensitive, producing amplicons from as few as four bacterial cells. Here we report on the basic CPA mechanism – single crossing CPA – and provide details on alternative mechanisms

    A Simple and Accurate Two-Step Long DNA Sequences Synthesis Strategy to Improve Heterologous Gene Expression in Pichia

    Get PDF
    In vitro gene chemical synthesis is a powerful tool to improve the expression of gene in heterologous system. In this study, a two-step gene synthesis strategy that combines an assembly PCR and an overlap extension PCR (AOE) was developed. In this strategy, the chemically synthesized oligonucleotides were assembled into several 200–500 bp fragments with 20–25 bp overlap at each end by assembly PCR, and then an overlap extension PCR was conducted to assemble all these fragments into a full length DNA sequence. Using this method, we de novo designed and optimized the codon of Rhizopus oryzae lipase gene ROL (810 bp) and Aspergillus niger phytase gene phyA (1404 bp). Compared with the original ROL gene and phyA gene, the codon-optimized genes expressed at a significantly higher level in yeasts after methanol induction. We believe this AOE method to be of special interest as it is simple, accurate and has no limitation with respect to the size of the gene to be synthesized. Combined with de novo design, this method allows the rapid synthesis of a gene optimized for expression in the system of choice and production of sufficient biological material for molecular characterization and biotechnological application

    Circular Polymerase Extension Cloning of Complex Gene Libraries and Pathways

    Get PDF
    High-throughput genomics and the emerging field of synthetic biology demand ever more convenient, economical, and efficient technologies to assemble and clone genes, gene libraries and synthetic pathways. Here, we describe the development of a novel and extremely simple cloning method, circular polymerase extension cloning (CPEC). This method uses a single polymerase to assemble and clone multiple inserts with any vector in a one-step reaction in vitro. No restriction digestion, ligation, or single-stranded homologous recombination is required. In this study, we elucidate the CPEC reaction mechanism and demonstrate its usage in demanding synthetic biology applications such as one-step assembly and cloning of complex combinatorial libraries and multi-component pathways

    Deep diversification of an AAV capsid protein by machine learning.

    Get PDF
    Modern experimental technologies can assay large numbers of biological sequences, but engineered protein libraries rarely exceed the sequence diversity of natural protein families. Machine learning (ML) models trained directly on experimental data without biophysical modeling provide one route to accessing the full potential diversity of engineered proteins. Here we apply deep learning to design highly diverse adeno-associated virus 2 (AAV2) capsid protein variants that remain viable for packaging of a DNA payload. Focusing on a 28-amino acid segment, we generated 201,426 variants of the AAV2 wild-type (WT) sequence yielding 110,689 viable engineered capsids, 57,348 of which surpass the average diversity of natural AAV serotype sequences, with 12-29 mutations across this region. Even when trained on limited data, deep neural network models accurately predict capsid viability across diverse variants. This approach unlocks vast areas of functional but previously unreachable sequence space, with many potential applications for the generation of improved viral vectors and protein therapeutics

    In vitro template-change PCR to create single crossover libraries: a case study with B. thuringiensis Cry2A toxins

    Get PDF
    During evolution the creation of single crossover chimeras between duplicated paralogous genes is a known process for increasing diversity. Comparing the properties of homologously recombined chimeras with one or two crossovers is also an efficient strategy for analyzing relationships between sequence variation and function. However, no well-developed in vitro method has been established to create single-crossover libraries. Here we present an in vitro template-change polymerase change reaction that has been developed to enable the production of such libraries. We applied the method to two closely related toxin genes from B. thuringiensis and created chimeras with differing properties that can help us understand how these toxins are able to differentiate between insect species

    Design and Synthesis of a Quintessential Self-Transmissible IncX1 Plasmid, pX1.0

    Get PDF
    DNA exchange in bacteria via conjugative plasmids is believed to be among the most important contributing factors to the rapid evolution- and diversification rates observed in bacterial species. The IncX1 plasmids are particularly interesting in relation to enteric bacteria, and typically carry genetic loads like antibiotic resistance genes and virulence factors. So far, however, a “pure” version of these molecular parasites, without genetic loads, has yet to be isolated from the environment. Here we report the construction of pX1.0, a fully synthesized IncX1 plasmid capable of horizontal transfer between different enteric bacteria. The designed pX1.0 sequence was derived from the consensus gene content of five IncX1 plasmids and three other, more divergent, members of the same phylogenetic group. The pX1.0 plasmid was shown to replicate stably in E. coli with a plasmid DNA per total DNA ratio corresponding to approximately 3–9 plasmids per chromosome depending on the growth phase of the host. Through conjugation, pX1.0 was able to self-transfer horizontally into an isogenic strain of E. coli as well as into two additional species belonging to the family Enterobacteriaceae. Our results demonstrate the immediate applicability of recent advances made within the field of synthetic biology for designing and constructing DNA systems, previously existing only in silica
    corecore