36 research outputs found

    Analysis of a viral metagenomic library from 200 m depth in Monterey Bay, California constructed by direct shotgun cloning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses have a profound influence on both the ecology and evolution of marine plankton, but the genetic diversity of viral assemblages, particularly those in deeper ocean waters, remains poorly described. Here we report on the construction and analysis of a viral metagenome prepared from below the euphotic zone in a temperate, eutrophic bay of coastal California.</p> <p>Methods</p> <p>We purified viruses from approximately one cubic meter of seawater collected from 200m depth in Monterey Bay, CA. DNA was extracted from the virus fraction, sheared, and cloned with no prior amplification into a plasmid vector and propagated in <it>E. coli </it>to produce the MBv200m library. Random clones were sequenced by the Sanger method. Sequences were assembled then compared to sequences in GenBank and to other viral metagenomic libraries using BLAST analyses.</p> <p>Results</p> <p>Only 26% of the 881 sequences remaining after assembly had significant (E ≀ 0.001) BLAST hits to sequences in the GenBank nr database, with most being matches to bacteria (15%) and viruses (8%). When BLAST analysis included environmental sequences, 74% of sequences in the MBv200m library had a significant match. Most of these hits (70%) were to microbial metagenome sequences and only 0.7% were to sequences from viral metagenomes. Of the 121 sequences with a significant hit to a known virus, 94% matched bacteriophages (Families <it>Podo</it>-, <it>Sipho</it>-, and <it>Myoviridae</it>) and 6% matched viruses of eukaryotes in the Family <it>Phycodnaviridae </it>(5 sequences) or the Mimivirus (2 sequences). The largest percentages of hits to viral genes of known function were to those involved in DNA modification (25%) or structural genes (17%). Based on reciprocal BLAST analyses, the MBv200m library appeared to be most similar to viral metagenomes from two other bays and least similar to a viral metagenome from the Arctic Ocean.</p> <p>Conclusions</p> <p>Direct cloning of DNA from diverse marine viruses was feasible and resulted in a distribution of virus types and functional genes at depth that differed in detail, but were broadly similar to those found in surface marine waters. Targeted viral analyses are useful for identifying those components of the greater marine metagenome that circulate in the subcellular size fraction.</p

    Global challenges for nitrogen science-policy interactions : Towards the international nitrogen management system (INMS) and improved coordination between multi-lateral environmental agreements

    No full text
    Human interference with the nitrogen cycle has doubled reactive nitrogen inputs to the global biosphere over the past century, leading to changes across multiple environmental issues that require urgent action. Nitrogen fertilizers and biological nitrogen fixation have allowed benefits of increased crop harvest and livestock production, while in some areas there is insufficient nitrogen to fertilize crops. Whether in excess or deficit, nitrogen losses from its inefficient use are causing a combination of freshwater and marine pollution, air pollution, alteration of climate balance, stratospheric ozone loss, biodiversity loss and reduction of soil quality. The resulting nitrogen pollution affects human health, well-being and livelihoods. Scientific efforts have begun to bring these issues together. However, there is still a high degree of fragmentation between research on the different benefits and threats of reactive nitrogen and between the respective policy frameworks, especially at the global scale. We argue that a more joined-up approach to managing the global nitrogen cycle is needed to develop the 'gravity of common cause' between nitrogen issues and to avoid policy trade-offs. We describe how a coherent system for science evidence provision is being developed to support policy development through the 'International Nitrogen Management System' (INMS). There is now a matching challenge to bring together the multiple policy agreements relevant for nitrogen as a foundation to address synergies/trade-offs and to set priorities. Based on review of existing frameworks, we outline the concept for an Interconvention nitrogen coordination mechanism. This could make a major contribution to multiple Sustainable Development Goals by stimulating the next generation of international nitrogen strategies: maximizing the benefits of efficient nitrogen use, while minimizing its many environmental threats
    corecore