37 research outputs found

    Stress-related cardiomyopathies

    Get PDF
    Stress-related cardiomyopathies can be observed in the four following situations: Takotsubo cardiomyopathy or apical ballooning syndrome; acute left ventricular dysfunction associated with subarachnoid hemorrhage; acute left ventricular dysfunction associated with pheochromocytoma and exogenous catecholamine administration; acute left ventricular dysfunction in the critically ill. Cardiac toxicity was mediated more by catecholamines released directly into the heart via neural connection than by those reaching the heart via the bloodstream. The mechanisms underlying the association between this generalized autonomic storm secondary to a life-threatening stress and myocardial toxicity are widely discussed. Takotsubo cardiomyopathy has been reported all over the world and has been acknowledged by the American Heart Association as a form of reversible cardiomyopathy. Four "Mayo Clinic" diagnostic criteria are required for the diagnosis of Takotsubo cardiomyopathy: 1) transient left ventricular wall motion abnormalities involving the apical and/or midventricular myocardial segments with wall motion abnormalities extending beyond a single epicardial coronary artery distribution; 2) absence of obstructive epicardial coronary artery disease that could be responsible for the observed wall motion abnormality; 3) ECG abnormalities, such as transient ST-segment elevation and/or diffuse T wave inversion associated with a slight troponin elevation; and 4) the lack of proven pheochromocytoma and myocarditis. ECG changes and LV dysfunction occur frequently following subarachnoid hemorrhage and ischemic stroke. This entity, referred as neurocardiogenic stunning, was called neurogenic stress-related cardiomyopathy. Stress-related cardiomyopathy has been reported in patients with pheochromocytoma and in patients receiving intravenous exogenous catecholamine administration. The role of a huge increase in endogenous and/or exogenous catecholamine level in critically ill patients (severe sepsis, post cardiac resuscitation, post tachycardia) to explain the onset of myocardial dysfunction was discussed. Further research is needed to understand this complex interaction between heart and brain and to identify risk factors and therapeutic and preventive strategies

    A 19-year-old man with sickle cell disease presenting with spinal infarction: a case report

    No full text
    INTRODUCTION: Vasculopathy of the large vessels commonly occurs in sickle cell disease, and as a result cerebral infarction is a well characterized complication of this condition. However, spinal infarction appears to be rare. Spinal infarct is infrequent in the non-sickle cell population as well, and accounts for only about 1 percent of all central nervous system infarcts. CASE PRESENTATION: In the present work, we report the case of a 19-year-old African-American man with sickle cell disease who experienced an anterior spinal infarct and subsequent quadriplegia. He was incidentally noted to be a heterozygote for factor V Leiden. We also reviewed the literature and found two previous cases of spinal cord infarction and sickle hemoglobin. Our literature search did not demonstrate that heterozygocity for factor V Leiden plays an important role in spinal cord infarction. CONCLUSIONS: The paucity of cases associated with sickle hemoglobin does not allow us to postulate any particular risk factors with sickle cell disease that might predispose patients to spinal cord infarction. Our patientā€™s case raises the question as to whether spinal cord infarction is being missed in individuals with sickle cell disease and neurologic symptoms
    corecore