7 research outputs found

    Detection of codon 12 K- ras mutations in non-neoplastic mucosa from bronchial carina in patients with lung adenocarcinomas

    Get PDF
    K- ras activation by point mutation in codon 12 has been reported in lung adenocarcinomas in various models of experimental lung tumours induced by chemical carcinogens. The hypothesis of the presence of cells containing K- ras mutation in non neoplastic bronchial carina, the main site of impaction of airborne contaminants, was investigated by evaluating concurrent lung tumour and non-neoplastic proximal bronchial carinae from 19 patients with lung adenocarcinomas. The restriction fragment length polymorphism enriched PCR method used can detect one mutant allele among 103normal alleles. A mutation was detected in 42% of lung adenocarcinoma samples. No mutation was detected in either tumour or bronchial carinae in nine patients (47%). K- ras mutation was detected in the lung tumour but not in bronchial carinae in four patients (21%), in both the lung tumour and bronchial carinae in four other patients (21%). In two patients (11%), K- ras mutation was detected in at least one bronchial carina, but not in the lung tumour. Mutations of codon 12, confirmed by sequencing analysis of ten samples, were G to T transversion, mostly TGT and GTT in bronchial carinae and lung tumours. Our data show that activated K- ras by point mutation can be present in non-neoplastic bronchial carina mucosa even when no mutation is detected in tumour samples. © 2000 Cancer Research Campaig

    Risk determination and prevention of breast cancer

    Get PDF

    BVES regulates c-Myc stability via PP2A and suppresses 1 colitis-induced 2 tumorigenesis

    Get PDF
    Objective Blood vessel epicardial substance (BVES) is a tight junction-associated protein that regulates epithelial-mesenchymal states and is underexpressed in epithelial malignancy. However, the functional impact of BVES loss on tumourigenesis is unknown. Here we define the in vivo role of BVES in colitis-associated cancer (CAC), its cellular function and its relevance to patients with IBD. Design We determined BVES promoter methylation status using an Infinium HumanMethylation450 array screen of patients with UC with and without CAC. We also measured BVES mRNA levels in a tissue microarray consisting of normal colons and CAC samples. Bves−/− and wild-type mice (controls) were administered azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce tumour formation. Last, we used a yeast twohybrid screen to identify BVES interactors and performed mechanistic studies in multiple cell lines to define how BVES reduces c-Myc levels. Results BVES mRNA was reduced in tumours from patients with CAC via promoter hypermethylation. Importantly, BVES promoter hypermethylation was concurrently present in distant non-malignant-appearing mucosa. As seen in human patients, Bves was underexpressed in experimental inflammatory carcinogenesis, and Bves−/− mice had increased tumour multiplicity and degree of dysplasia after AOM/DSS administration. Molecular analysis of Bves−/− tumours revealed Wnt activation and increased c-Myc levels. Mechanistically, we identified a new signalling pathway whereby BVES interacts with PR61α, a protein phosphatase 2A regulatory subunit, to mediate c-Myc destruction. Conclusion Loss of BVES promotes inflammatory tumourigenesis through dysregulation of Wnt signalling and the oncogene c-Myc. BVES promoter methylation status may serve as a CAC biomarker
    corecore