126 research outputs found
Stromal mesenchyme cell genes of the human prostate and bladder
BACKGROUND: Stromal mesenchyme cells play an important role in epithelial differentiation and likely in cancer as well. Induction of epithelial differentiation is organ-specific, and the genes responsible could be identified through a comparative genomic analysis of the stromal cells from two different organs. These genes might be aberrantly expressed in cancer since cancer could be viewed as due to a defect in stromal signaling. We propose to identify the prostate stromal genes by analysis of differentially expressed genes between prostate and bladder stromal cells, and to examine their expression in prostate cancer. METHODS: Immunohistochemistry using antibodies to cluster designation (CD) cell surface antigens was first used to characterize the stromas of the prostate and bladder. Stromal cells were prepared from either prostate or bladder tissue for cell culture. RNA was isolated from the cultured cells and analyzed by DNA microarrays. Expression of candidate genes in normal prostate and prostate cancer was examined by RT-PCR. RESULTS: The bladder stroma was phenotypically different from that of the prostate. Most notable was the presence of a layer of CD13(+ )cells adjacent to the urothelium. This structural feature was also seen in the mouse bladder. The prostate stroma was uniformly CD13(-). A number of differentially expressed genes between prostate and bladder stromal cells were identified. One prostate gene, proenkephalin (PENK), was of interest because it encodes a hormone. Secreted proteins such as hormones and bioactive peptides are known to mediate cell-cell signaling. Prostate stromal expression of PENK was verified by an antibody raised against a PENK peptide, by RT-PCR analysis of laser-capture microdissected stromal cells, and by database analysis. Gene expression analysis showed that PENK expression was down-regulated in prostate cancer. CONCLUSION: Our findings show that the histologically similar stromas of the prostate and bladder are phenotypically different, and express organ-specific genes. The importance of these genes in epithelial development is suggested by their abnormal expression in cancer. Among the candidates is the hormone PENK and the down-regulation of PENK expression in cancer suggests a possible association with cancer development
A double blind, randomised placebo controlled trial of topical 2% viscous lidocaine in improving oral intake in children with painful infectious mouth conditions
<p>Abstract</p> <p>Background</p> <p>Painful infectious mouth conditions are a common presentation to emergency departments. Although self limiting, painful ulcerative lesions and inflamed mucosa can decrease oral intake and can lead to dehydration. Oral analgesia is of limited efficacy and is often refused by the patient. Despite widespread use of oral 2% viscous lidocaine for many years, there is little evidence for its efficacy as an analgesic and in aiding oral intake in children with painful infectious mouth conditions. This study aims to establish the effectiveness of 2% viscous lidocaine in increasing oral intake in these children by comparing it with placebo.</p> <p>Methods/Design</p> <p>This study is a randomised double-blind placebo controlled trial of children between 6 months and 8 years of age with painful infectious mouth conditions defined as gingivostomatitis (herpetic or non herpetic), ulcerative pharyngitis, herpangina and hand foot and mouth disease as assessed by the treating clinician in association with a history of poor oral fluid intake. It will be conducted at a single tertiary paediatric emergency department in Melbourne Australia.</p> <p>20 patients have already been randomised to receive 2% lidocaine or placebo in a pilot study to determine the sample size in a preplanned adaptive design. A further 80 patients will be randomised to receive either 2% lidocaine or placebo. The placebo agent is identical to lidocaine in terms of appearance, flavour and smell. All clinical and research staff involved, patients and their parents will be blinded to treatment allocation.</p> <p>The primary endpoint is the amount of fluid ingested by each child, expressed in ml/kg, within 60 minutes from the time of administration of the study mixture. Secondary endpoints are the proportion of patients ingesting 5 ml/kg and 10 ml/kg at 30 and 60 minutes after drug administration and the incidence of adverse events. Longer term outcomes will include the proportion of patients requiring hospital admission and length of emergency department stay.</p> <p>Discussion</p> <p>This trial will define the role of 2% lidocaine in the treatment of painful infectious mouth conditions</p> <p>Trial registration</p> <p>The trial is registered with the Australian and New Zealand Clinical Trials Registry - <a href="http://www.anzctr.org.au/ACTRN12609000566235.aspx">ACTRN12609000566235</a>.</p
Citizen Science Reveals Unexpected Continental-Scale Evolutionary Change in a Model Organism
Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the brown-lipped banded snail (Cepaea nemoralis). This species is sensitive to its thermal environment and exhibits several polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C. nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009 through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the colour phenotype with the highest albedo (yellow) was shown to have persisted and a difference in colour frequency between woodland and more open habitats was confirmed, but there was no general increase in the frequency of yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation. By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating that the influence of other selective agents, possibly related to changing predation pressure and habitat change with effects on micro-climate
Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls.
Determining whether potential causal variants for related diseases are shared can identify overlapping etiologies of multifactorial disorders. Colocalization methods disentangle shared and distinct causal variants. However, existing approaches require independent data sets. Here we extend two colocalization methods to allow for the shared-control design commonly used in comparison of genome-wide association study results across diseases. Our analysis of four autoimmune diseases--type 1 diabetes (T1D), rheumatoid arthritis, celiac disease and multiple sclerosis--identified 90 regions that were associated with at least one disease, 33 (37%) of which were associated with 2 or more disorders. Nevertheless, for 14 of these 33 shared regions, there was evidence that the causal variants differed. We identified new disease associations in 11 regions previously associated with one or more of the other 3 disorders. Four of eight T1D-specific regions contained known type 2 diabetes (T2D) candidate genes (COBL, GLIS3, RNLS and BCAR1), suggesting a shared cellular etiology.MF is funded by the Wellcome Trust (099772). CW and HG are funded by the
Wellcome Trust (089989).
This work was funded by the JDRF (9–2011–253), the Wellcome Trust (091157)
and the National Institute for Health Research
(NIHR) Cambridge Biomedical
Research Centre. The Cambridge Institute for Medical Research (CIMR) is in receipt
of a Wellcome Trust Strategic Award (100140). ImmunoBase.org is supported by Eli
Lilly and Company.
We thank the UK Medical Research Council and
Wellcome Trust for funding the
collection of DNA for the British 1958 Birth Cohort (MRC grant G0000934, WT grant
068545/Z/02). DNA control samples were prepared and provided by S. Ring, R.
Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton.
Biotec Cluster M4, the Fidelity Biosciences Research Initiative, Research Foundation
Flanders, Research Fund KU Leuven, the Belgian Charcot Foundation,
Gemeinntzige Hertie Stiftung, University Zurich, the Danish MS Society, the Danish
Council for Strategic Research, the Academy of
Finland, the Sigrid Juselius
Foundation, Helsinki University, the Italian MS Foundation, Fondazione Cariplo, the
Italian Ministry of University and Research, the Torino Savings Bank Foundation, the
Italian Ministry of Health, the Italian Institute of Experimental Neurology, the MS
Association of Oslo, the Norwegian Research Council, the South–Eastern
Norwegian Health Authorities, the Australian National Health and Medical Research
Council, the Dutch MS Foundation and Kaiser Permanente.
Marina Evangelou is
thanked for motivating the investigation of the
FASLG
association.This is the author accepted manuscript. The final version is available at http://www.nature.com/ng/journal/v47/n7/full/ng.3330.html
A Therapeutic Chemical Chaperone Inhibits Cholera Intoxication and Unfolding/Translocation of the Cholera Toxin A1 Subunit
Cholera toxin (CT) travels as an intact AB5 protein toxin from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin. Translocation of CTA1 from the ER to the cytosol is then facilitated by the quality control mechanism of ER-associated degradation (ERAD). Thermal instability in the isolated CTA1 subunit generates an unfolded toxin conformation that acts as the trigger for ERAD-mediated translocation to the cytosol. In this work, we show by circular dichroism and fluorescence spectroscopy that exposure to 4-phenylbutyric acid (PBA) inhibited the thermal unfolding of CTA1. This, in turn, blocked the ER-to-cytosol export of CTA1 and productive intoxication of either cultured cells or rat ileal loops. In cell culture studies PBA did not affect CT trafficking to the ER, CTA1 dissociation from the holotoxin, or functioning of the ERAD system. PBA is currently used as a therapeutic agent to treat urea cycle disorders. Our data suggest PBA could also be used in a new application to prevent or possibly treat cholera
Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK
Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10−1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10−2 m/day at 150–400 m BGL to 10−3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields
Cross-disease Meta-analysis of Genome-wide Association Studies for Systemic Sclerosis and Rheumatoid Arthritis Reveals IRF4 as a New Common Susceptibility Locus
OBJECTIVES: Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that share clinical and immunological characteristics. To date, several shared SSc-RA loci have been identified independently. In this study, we aimed to systematically search for new common SSc-RA loci through an inter-disease meta-GWAS strategy. METHODS: We performed a meta-analysis combining GWAS datasets of SSc and RA using a strategy that allowed identification of loci with both same-direction and opposing-direction allelic effects. The top single-nucleotide polymorphisms (SNPs) were followed-up in independent SSc and RA case-control cohorts. This allowed us to increase the sample size to a total of 8,830 SSc patients, 16,870 RA patients and 43,393 controls. RESULTS: The cross-disease meta-analysis of the GWAS datasets identified several loci with nominal association signals (P-value < 5 x 10(-6) ), which also showed evidence of association in the disease-specific GWAS scan. These loci included several genomic regions not previously reported as shared loci, besides risk factors associated with both diseases in previous studies. The follow-up of the putatively new SSc-RA loci identified IRF4 as a shared risk factor for these two diseases (Pcombined = 3.29 x 10(-12) ). In addition, the analysis of the biological relevance of the known SSc-RA shared loci pointed to the type I interferon and the interleukin 12 signaling pathways as the main common etiopathogenic factors. CONCLUSIONS: Our study has identified a novel shared locus, IRF4, for SSc and RA and highlighted the usefulness of cross-disease GWAS meta-analysis in the identification of common risk loci
- …