797 research outputs found
Late-onset Lafora disease with prominent parkinsonism due to a rare mutation in EPM2A
Lafora disease (LD) is an autosomal recessive form of progressive myoclonic epilepsy that is caused by mutations in EPM2A, encoding laforin, and NHLRC1 (EPM2B), encoding malin.(1) LD is classically described with onset in early teenage years. Patients develop myoclonus, epilepsy, visual hallucinations, and psychosis. Dementia is a prominent feature and often occurs in the late teenage years. LD typically progresses quickly, and patients become bedridden and dependent within 10 years of symptom onset, with life expectancy in the early 20s.(2,3) Only a small number of late-onset cases of LD have been described. Even then, these so-called late-onset cases have typically presented in the 20s, with dementia occurring in the early 30s. We describe a patient with extremely late onset and extended survival with prominent parkinsonism due to a novel EPM2A variant
Using Mendelian randomization to understand and develop treatments for neurodegenerative disease
Common neurodegenerative diseases are thought to arise from a combination of environmental and genetic exposures. Mendelian randomization is a powerful way to leverage existing genetic data to investigate causal relationships between risk factors and disease. In recent years, Mendelian randomization has gathered considerable traction in neurodegenerative disease research, providing valuable insights into the aetiology of these conditions. This review aims to evaluate the impact of Mendelian randomization studies on translational medicine for neurodegenerative diseases, highlighting the advances made and challenges faced. We will first describe the fundamental principles and limitations of Mendelian randomization and then discuss the lessons from Mendelian randomization studies of environmental risk factors for neurodegeneration. We will illustrate how Mendelian randomization projects have used novel resources to study molecular pathways of neurodegenerative disease and discuss the emerging role of Mendelian randomization in drug development. Finally, we will conclude with our view of the future of Mendelian randomization in these conditions, underscoring unanswered questions in this field
Heterogeneity in clinical features and disease severity in ataxia-associated SYNE1 mutations
The autosomal recessive spinocerebellar ataxias are an exciting field of study, with a growing number of causal genes and an expanding phenotypic spectrum. SYNE1 was originally discovered in 2007 as the causal gene underlying autosomal recessive spinocerebellar ataxia 1, a disease clinically thought to manifest with mainly pure cerebellar ataxia. Since the original report SYNE1 mutations have also been identified in families with motor neuronopathy and arthrogryposis but few families have been screened as the gene is very large at 146 exons in length. We screened 196 recessive and sporadic ataxia patients for mutations in SYNE1 using next generation sequencing in order to assess its frequency and extend the clinicogenetic spectrum. We identified four novel truncating mutations spread throughout the SYNE1 gene from three families living in London that originated from England, Turkey and Sri Lanka. The phenotype was mainly pure cerebellar ataxia in two families, cognitive decline was present in all three families, axonal neuropathy in one family and marked spasticity in the Turkish family, with a range of disease severities. Searching for genotype-phenotype correlations in the SYNE1 gene, defects located near the 3' prime end of the gene are more frequently associated with motor neuron or neuromuscular involvement so far. Our data indicate SYNE1 mutations are not an uncommon cause of recessive ataxia with or without additional clinical features in patients from various ethnicities. The use of next generation sequencing allows the rapid analysis of large genes and will likely reveal more SYNE1 associated cases and further expand genotype-phenotype correlations
Bioenergetic Consequences of PINK1 Mutations in Parkinson Disease
Background: Mutations of the gene for PTEN-induced kinase 1 (PINK1) are a cause of familial Parkinson's disease (PD). PINK1 protein has been localised to mitochondria and PINK1 gene knockout models exhibit abnormal mitochondrial function. The purpose of this study was to determine whether cells derived from PD patients with a range of PINK1 mutations demonstrate similar defects of mitochondrial function, whether the nature and severity of the abnormalities vary between mutations and correlate with clinical features.Methodology: We investigated mitochondrial bioenergetics in live fibroblasts from PINK1 mutation patients using single cell techniques. We found that fibroblasts from PINK1 mutation patients had significant defects of bioenergetics including reduced mitochondrial membrane potential, altered redox state, a respiratory deficiency that was determined by substrate availability, and enhanced sensitivity to calcium stimulation and associated mitochondrial permeability pore opening. There was an increase in the basal rate of free radical production in the mutant cells. The pattern and severity of abnormality varied between different mutations, and the less severe defects in these cells were associated with later age of onset of PD.Conclusions: The results provide insight into the molecular pathology of PINK1 mutations in PD and also confirm the critical role of substrate availability in determining the biochemical phenotype - thereby offering the potential for novel therapeutic strategies to circumvent these abnormalities
The genetics of dystonia: new twists in an old tale.
Dystonia is a common movement disorder seen by neurologists in clinic. Genetic forms of the disease are important to recognize clinically and also provide valuable information about possible pathogenic mechanisms within the wider disorder. In the past few years, with the advent of new sequencing technologies, there has been a step change in the pace of discovery in the field of dystonia genetics. In just over a year, four new genes have been shown to cause primary dystonia (CIZ1, ANO3, TUBB4A and GNAL), PRRT2 has been identified as the cause of paroxysmal kinesigenic dystonia and other genes, such as SLC30A10 and ATP1A3, have been linked to more complicated forms of dystonia or new phenotypes. In this review, we provide an overview of the current state of knowledge regarding genetic forms of dystonia-related to both new and well-known genes alike-and incorporating genetic, clinical and molecular information. We discuss the mechanistic insights provided by the study of the genetic causes of dystonia and provide a helpful clinical algorithm to aid clinicians in correctly predicting the genetic basis of various forms of dystonia
- …