35 research outputs found

    Forced triboelectrification of fine powders in particle wall collisions

    Get PDF
    Triboelectric separation as an inexpensive and environmentally friendly technique could contribute to material-specific sorting. However, the application as a widespread method is limited due to the complexity of the process. In particle wall collisions, various parameters like collision energy and angle, work function of the contact partners, humidity, surface roughness, etc. influence the particle charging in a hardly predictable way. This study investigates the possibilities of forced triboelectric particle charging by applying an electrical potential to the metal contact partner (copper/steel pipe). The variations included different pipe lengths (0.5 m–3 m), particle materials, and particle sizes for limestone. A distinction is made between the net charge of the particles and the positive, negative, and neutral mass fractions. The work functions of the investigated materials vary from about 3.2 eV to >8.5 eV for glass, limestone, artificial slag, and lithium aluminate particles. With the applied high-voltage potential, the particle net charge can be shifted linearly. For limestone, it is shown that the neutral fraction is highest at the Point of Zero Net Charge (PZNC). This observation may identify an approach for the material selective separation of one target component from a multi-material mixture

    Limitation in the performance of fine powder separation in a turbo air classifier

    Get PDF
    The deflector wheel classifier is a widely used device for the separation of fine powders in different industrial applications. The primary objective of the separation process is to achieve high-quality separation of fine powders characterized by a narrow particle size distribution and high separation sharpness. Theoretically, the reduction in the cut size is accomplished by decreasing the gas flow rate or increasing the rotational speed of the classifier, which amplifies the centrifugal forces compared to the drag forces exerted on the particles. This behavior is, indeed, observed in many cases, but it cannot be extrapolated arbitrarily. At their performance limit, classifiers may, against expectation, show an increase in cut size and, in addition, a reduction in the sharpness of the separation process. The limitation in the reduction in the cut size and in the improvement in the separation sharpness arises due to an imbalance between the operating rotational speed and flow rate, which results in a non-uniform flow field in the classifier. If the balance conditions are fulfilled, an optimum separation with a high separation sharpness can be achieved. In this work, CFD simulations validated by some experimental results are employed to represent this limitation, which is obtained by varying the operating parameters using different material densities with particles ranging from one to ten microns

    Development of a model for the separation characteristics of a deflector wheel classifier including particle collision and rebound behavior

    Get PDF
    Deflector wheel classifiers are widespread in industry for the separation of powders into fine and coarse powders. Even though this separation process has been known for quite some time, it is not yet fully understood, and existing models fail to precisely predict the separation characteristics. Due to the high throughput of deflector wheel classifiers, it is greatly beneficial to estimate the separation characteristics before the experiment. Here, the developed model critically examines the usual assumptions, such as ideal airflow, neglection of particle–wall and particle–particle interactions, or spherically-shaped particles. First, the investigation of the air flow using a Particle Image Velocimetry (PIV) system showed significant differences to the assumed ideal flow field, then particle sphericity and its influence on the interaction between the particles and the paddles of the deflector wheel was investigated and compared with particle rebound behavior on a static wall. Surprisingly, comminuted glass behaves similarly to comminuted limestone in multiple aspects and not like glass beads. To determine the number of particle–particle collisions, Discrete Element Method (DEM) simulations were performed. The aforementioned aspects found application in the model and the separation behavior was well-estimated

    Desoxidation von gasgetragenen Pulvern

    Get PDF
    Metallische Pulver gelten als wichtige Ausgangsmaterialien in vielen Fertigungsprozessen, z. B. bei Fügeverfahren, additiver Fertigung, Beschichtung usw. Bei der Herstellung metallischer Pulver werden die Partikeloberflächen, selbst bei der Handhabung in der Inertgas-Umgebung, infolge von Sauerstoffspuren mit einer Oxidschicht bedeckt, welche für die Weiterverarbeitung und die Qualität der Endprodukte negativ sein kann. Das Projekt zielt darauf ab, die Desoxidation metallischer Pulver durch Wechselwirkung mit aktivierten Wasserstoffspezies zu realisieren. Um dieses Ziel zu erreichen, wurden Pulver in einer Wirbelschicht mit den aktivierten Wasserstoffspezies in Kontakt gebracht. Die Aktivierung wurde mittels dielektrischer Barriere-Entladung (DBD) erzielt und mit den Resultaten der rein thermisch aktivierten Wasserstoffspezies verglichen. Für die Einbringung der DBD-aktivierten Spezies wurden verschiedenen Geometrien untersucht, welche vom konvektiven Transport der DBD-Spezies in die Wirbelschicht bis zu der direkten Erzeugung des Plasmas in der Wirbelschicht reichen. Anhand einer einfachen Analytik basierend auf der Schüttdichte der Pulver konnte gezeigt werden, wie effektiv die verschiedenen Desoxidationsmethoden sind

    Development of a Model for the Separation Characteristics of a Deflector Wheel Classifier Including Particle Collision and Rebound Behavior

    Get PDF
    Deflector wheel classifiers are widespread in industry for the separation of powders into fine and coarse powders. Even though this separation process has been known for quite some time, it is not yet fully understood, and existing models fail to precisely predict the separation characteristics. Due to the high throughput of deflector wheel classifiers, it is greatly beneficial to estimate the separation characteristics before the experiment. Here, the developed model critically examines the usual assumptions, such as ideal airflow, neglection of particle–wall and particle–particle interactions, or spherically-shaped particles. First, the investigation of the air flow using a Particle Image Velocimetry (PIV) system showed significant differences to the assumed ideal flow field, then particle sphericity and its influence on the interaction between the particles and the paddles of the deflector wheel was investigated and compared with particle rebound behavior on a static wall. Surprisingly, comminuted glass behaves similarly to comminuted limestone in multiple aspects and not like glass beads. To determine the number of particle–particle collisions, Discrete Element Method (DEM) simulations were performed. The aforementioned aspects found application in the model and the separation behavior was well-estimated.DFG, 313858373, SPP 2045: Hochspezifische mehrdimensionale Fraktionierung von technischen Feinstpartikelsysteme
    corecore