1,314 research outputs found

    Satisfiability of ECTL* with tree constraints

    Full text link
    Recently, we have shown that satisfiability for ECTL\mathsf{ECTL}^* with constraints over Z\mathbb{Z} is decidable using a new technique. This approach reduces the satisfiability problem of ECTL\mathsf{ECTL}^* with constraints over some structure A (or class of structures) to the problem whether A has a certain model theoretic property that we called EHD (for "existence of homomorphisms is decidable"). Here we apply this approach to concrete domains that are tree-like and obtain several results. We show that satisfiability of ECTL\mathsf{ECTL}^* with constraints is decidable over (i) semi-linear orders (i.e., tree-like structures where branches form arbitrary linear orders), (ii) ordinal trees (semi-linear orders where the branches form ordinals), and (iii) infinitely branching trees of height h for each fixed hNh\in \mathbb{N}. We prove that all these classes of structures have the property EHD. In contrast, we introduce Ehrenfeucht-Fraisse-games for WMSO+B\mathsf{WMSO}+\mathsf{B} (weak MSO\mathsf{MSO} with the bounding quantifier) and use them to show that the infinite (order) tree does not have property EHD. As a consequence, a different approach has to be taken in order to settle the question whether satisfiability of ECTL\mathsf{ECTL}^* (or even LTL\mathsf{LTL}) with constraints over the infinite (order) tree is decidable

    High-resolution x-ray telescopes

    Full text link
    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellar-mass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.Comment: 19 pages, 11 figures, SPIE Conference 7803 "Adaptive X-ray Optics", part of SPIE Optics+Photonics 2010, San Diego CA, 2010 August 2-

    A Combined Spitzer and Chandra Survey of Young Stellar Objects in the Serpens Cloud Core

    Full text link
    We present Spitzer and Chandra observations of the nearby (~260 pc) embedded stellar cluster in the Serpens Cloud Core. We observed, using Spitzer's IRAC and MIPS instruments, in six wavelength bands from 3 to 70 μm{\mu}m, to detect thermal emission from circumstellar disks and protostellar envelopes, and to classify stars using color-color diagrams and spectral energy distributions (SEDs). These data are combined with Chandra observations to examine the effects of circumstellar disks on stellar X-ray properties. Young diskless stars were also identified from their increased X-ray emission. We have identified 138 YSOs in Serpens: 22 class 0/I, 16 flat spectrum, 62 class II, 17 transition disk, and 21 class III stars; 60 of which exhibit X-ray emission. Our primary results are the following: 1.) ten protostars detected previously in the sub-millimeter are detected at lambda < 24 microns, seven at lambda < 8 microns, 2.) the protostars are more closely grouped than more evolved YSOs (median separation : ~0.024 pc, and 3.) the luminosity and temperature of the X-ray emitting plasma around these YSOs does not show any significant dependence on evolutionary class. We combine the infrared derived values of AK and X-ray values of NH for 8 class III objects and find that the column density of hydrogen gas per mag of extinctions is less than half the standard interstellar value, for AK > 1. This may be the result of grain growth through coagulation and/or the accretion of volatiles in the Serpens cloud core.Comment: 69 pages, 16 figures, accepted to ApJ. Higher Resolution Figures at: http://www.cfa.harvard.edu/~ewinston

    X-Atlas: An Online Archive of Chandra's Stellar High Energy Transmission Gratings Observations

    Full text link
    The high-resolution X-ray spectroscopy made possible by the 1999 deployment of the Chandra X-ray Observatory has revolutionized our understanding of stellar X-ray emission. Many puzzles remain, though, particularly regarding the mechanisms of X-ray emission from OB stars. Although numerous individual stars have been observed in high-resolution, realizing the full scientific potential of these observations will necessitate studying the high-resolution Chandra dataset as a whole. To facilitate the rapid comparison and characterization of stellar spectra, we have compiled a uniformly processed database of all stars observed with the Chandra High Energy Transmission Grating (HETG). This database, known as X-Atlas, is accessible through a web interface with searching, data retrieval, and interactive plotting capabilities. For each target, X-Atlas also features predictions of the low-resolution ACIS spectra convolved from the HETG data for comparison with stellar sources in archival ACIS images. Preliminary analyses of the hardness ratios, quantiles, and spectral fits derived from the predicted ACIS spectra reveal systematic differences between the high-mass and low-mass stars in the atlas and offer evidence for at least two distinct classes of high-mass stars. A high degree of X-ray variability is also seen in both high and low-mass stars, including Capella, long thought to exhibit minimal variability. X-Atlas contains over 130 observations of approximately 25 high-mass stars and 40 low-mass stars and will be updated as additional stellar HETG observations become public. The atlas has recently expanded to non-stellar point sources, and Low Energy Transmission Grating (LETG) observations are currently being added as well

    Percutaneous coronary interventions in octogenarians in the American College of Cardiology–National Cardiovascular Data Registry Development of a nomogram predictive of in-hospital mortality

    Get PDF
    AbstractObjectivesWe sought to evaluate the results of percutaneous coronary intervention (PCI) in elderly patients in contemporary practice.BackgroundPrior studies of PCI in the elderly population demonstrate increased in-hospital mortality, but these studies are limited by small population size.MethodsUsing the American College of Cardiology–National Cardiovascular Data Registry (ACC–NCDR) of 100,253 patients, the in-hospital outcomes in all 8,828 PCI procedures performed on octogenarians were evaluated. Patients underwent PCI between 1998 and 2000 at over 145 participating centers.ResultsThe mean age was 83.72 ± 3.02 years, with female preponderance (53%). The PCI was considered angiographically successful in 93%, stents were placed in 75%, and the post-PCI length of stay was 3.3 ± 5.1 days. Overall in-hospital mortality was 3.77% but was only 1.35% in PCI without recent myocardial infarction (MI) within one week (p < 0.0001). Patients having PCI within 6 h of the onset of their MI had an increase in mortality tenfold (13.79%) compared with patients without a recent MI (p < 0.0001). All groups that were defined based on time of PCI after MI onset up to seven days had increased mortality (all p < 0.0001). Older age (odds ratio [OR] of 1.03 per incremental year), depressed ejection fraction (EF) (OR 0.69 per 10 points for EF <60%), and time of PCI after MI onset (<6 h, OR 6.87; 6 to 24 h, OR 5.66; 24 h to one week, OR 2.93) were most strongly predictive of outcome by multivariate analysis. The predicted mortality from the multivariate model correlated well with the observed in-hospital mortality up to 20% mortality. A 254-point nomogram was constructed employing the logistic model using a weighted point system.ConclusionsIn patients ≥80 years old, PCI has good success and acceptable mortality. The presence of an acute or recent MI substantially increases the risk of in-hospital death

    A Zero-Gravity Instrument to Study Low Velocity Collisions of Fragile Particles at Low Temperatures

    Get PDF
    We discuss the design, operation, and performance of a vacuum setup constructed for use in zero (or reduced) gravity conditions to initiate collisions of fragile millimeter-sized particles at low velocity and temperature. Such particles are typically found in many astronomical settings and in regions of planet formation. The instrument has participated in four parabolic flight campaigns to date, operating for a total of 2.4 hours in reduced gravity conditions and successfully recording over 300 separate collisions of loosely packed dust aggregates and ice samples. The imparted particle velocities achieved range from 0.03-0.28 m s^-1 and a high-speed, high-resolution camera captures the events at 107 frames per second from two viewing angles separated by either 48.8 or 60.0 degrees. The particles can be stored inside the experiment vacuum chamber at temperatures of 80-300 K for several uninterrupted hours using a built-in thermal accumulation system. The copper structure allows cooling down to cryogenic temperatures before commencement of the experiments. Throughout the parabolic flight campaigns, add-ons and modifications have been made, illustrating the instrument flexibility in the study of small particle collisions.Comment: D. M. Salter, D. Hei{\ss}elmann, G. Chaparro, G. van der Wolk, P. Rei{\ss}aus, A. G. Borst, R. W. Dawson, E. de Kuyper, G. Drinkwater, K. Gebauer, M. Hutcheon, H. Linnartz, F. J. Molster, B. Stoll, P. C. van der Tuijn, H. J. Fraser, and J. Blu
    corecore