11 research outputs found

    International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Dog

    No full text
    The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions) Project (www.toxpath.org/inhand.asp) is a joint initiative of the societies of toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying lesions observed in most tissues and organs from the dog used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions, lesions induced by exposure to test materials, and relevant infectious and parasitic lesions. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists

    An Analysis of Pharmaceutical Experience with Decades of Rat Carcinogenicity Testing: Support for a Proposal to Modify Current Regulatory Guidelines

    No full text
    Data collected from 182 marketed and nonmarketed pharmaceuticals demonstrate that there is little value gained in conducting a rat two-year carcinogenicity study for compounds that lack: (1) histopathologic risk factors for rat neoplasia in chronic toxicology studies, (2) evidence of hormonal perturbation, and (3) positive genetic toxicology results. Using a single positive result among these three criteria as a test for outcome in the two-year study, fifty-two of sixty-six rat tumorigens were correctly identified, yielding 79% test sensitivity. When all three criteria were negative, sixty-two of seventy-six pharmaceuticals (82%) were correctly predicted to be rat noncarcinogens. The fourteen rat false negatives had two-year study findings of questionable human relevance. Applying these criteria to eighty-six additional chemicals identified by the International Agency for Research on Cancer as likely human carcinogens and to drugs withdrawn from the market for carcinogenicity concerns confirmed their sensitivity for predicting rat carcinogenicity outcome. These analyses support a proposal to refine regulatory criteria for conducting a two-year rat study to be based on assessment of histopathologic findings from a rat six-month study, evidence of hormonal perturbation, genetic toxicology results, and the findings of a six-month transgenic mouse carcinogenicity study. This proposed decision paradigm has the potential to eliminate over 40% of rat two-year testing on new pharmaceuticals without compromise to patient safet
    corecore