32 research outputs found
Season of Birth and Dopamine Receptor Gene Associations with Impulsivity, Sensation Seeking and Reproductive Behaviors
Season of birth (SOB) has been associated with many physiological and psychological traits including novelty seeking and sensation seeking. Similar traits have been associated with genetic polymorphisms in the dopamine system. SOB and dopamine receptor genetic polymorphisms may independently and interactively influence similar behaviors through their common effects on the dopaminergic system.Based on a sample of 195 subjects, we examined whether SOB was associated with impulsivity, sensation seeking and reproductive behaviors. Additionally we examined potential interactions of dopamine receptor genes with SOB for the same set of traits. Phenotypes were evaluated using the Sociosexual Orientation Inventory, the Barratt Impulsivity Scale, the Eysenck Impulsivity Questionnaire, the Sensation Seeking Scale, and the Delay Discounting Task. Subjects were also asked about their age at first sex as well as their desired age at the birth of their first child. The dopamine gene polymorphisms examined were Dopamine Receptor D2 (DRD2) TaqI A and D4 (DRD4) 48 bp VNTR. Primary analyses included factorial genderxSOB ANOVAs or binary logistic regression models for each dependent trait. Secondary analysis extended the factorial models by also including DRD2 and DRD4 genotypes as independent variables. Winter-born males were more sensation seeking than non-winter born males. In factorial models including both genotype and season of birth as variables, two previously unobserved effects were discovered: (1) a SOBxDRD4 interaction effect on venturesomeness and (2) a DRD2xDRD4 interaction effect on sensation seeking.These results are consistent with past findings that SOB is related to sensation seeking. Additionally, these results provide tentative support for the hypothesis that SOB modifies the behavioral expression of dopaminergic genetic polymorphism. These findings suggest that SOB should be included in future studies of risky behaviors and behavioral genetic studies of the dopamine system
Pseudoneoplastic lesions of the testis and paratesticular structures
Pseudotumors or tumor-like proliferations (non-neoplastic masses) and benign mimickers (non-neoplastic cellular proliferations) are rare in the testis and paratesticular structures. Clinically, these lesions (cysts, ectopic tissues, and vascular, inflammatory, or hyperplastic lesions) are of great interest for the reason that, because of the topography, they may be relevant as differential diagnoses. The purpose of this paper is to present an overview of the pseudoneoplasic entities arising in the testis and paratesticular structures; emphasis is placed on how the practicing pathologist may distinguish benign mimickers and pseudotumors from true neoplasia. These lesions can be classified as macroscopic or microscopic mimickers of neoplasia
Evaluation of skin sensitivity after shock wave treatment in horses
Objective: To evaluate the effects of shock wave treatment on cutaneous nerve function, compared with the effects of local nerve block and sedation.
Animals: 18 clinically sound Swiss Warmbloods.
Procedure: Horses were randomly allocated to 3 groups and received different amounts and types of shock waves (extracorporeal shock wave treatment [ESWT] or radial pressure wave treatment [RPWT]). Horses were sedated with xylazine and levomethadone. Shock waves were applied to the lateral palmar digital nerve at the level of the proximal sesamoid bones on 1 forelimb. Skin sensitivity was evaluated by means of an electrical stimulus at the coronary band before and 5 minutes after sedation and at 4, 24, and 48 hours after application of ESWT or RPWT. On the contralateral forelimb, skin sensitivity was tested before and 10 minutes after an abaxial sesamoid nerve block.
Results: No significant changes in skin sensitivity were detected, regardless of the shock wave protocol applied. Mean reaction thresholds after sedation were more than twice the baseline thresholds. After the abaxial sesamoid block, no reaction was recorded in any of the horses.
Conclusions and Clinical Relevance: Application of ESWT or RPWT to the palmar digital nerve had no effect on cutaneous sensation distal to the treated region for at least 2 days after application. The analgesic effect of sedation on reaction to electrical stimuli was distinct but varied among horses
Aggregation behavior in water of amphiphilic diblock copolymers bearing biocompatible phosphorylcholine and cholesteryl groups
Poly(2-(methacryloyloxy)ethyl phosphorylcholine)-block-poly(cholesteryl 6-methacryloyloxyhexanoate) (PMPC 82 -b-PChM n) copolymers with different PChM block lengths were prepared via reversible addition-fragmentation chain transfer controlled/living radical polymerization using a PMPC-based macro-chain transfer agent. The subscript number and n (=3 and 6) refer to the degree of polymerization of the PMPC and PChM blocks, respectively. PMPC 82 -b-PChM n cannot dissolve in water directly due to the strong hydrophobic nature of the PChM block. To prepare the aqueous solution, the diblock copolymer was dissolved in an organic solvent and then dialyzed against pure water. These diblock copolymers formed spherical and rod-like micelles in water, depending on the composition of cholesteryl (Chol) group in the polymer. The prepared aggregates were characterized using static light scattering, dynamic light scattering, transmission electron microscopy and fluorescence probe techniques. The characterization results suggest that the morphology of the polymer aggregates can be controlled from spherical to rod-like micelles by increasing the number of Chol groups in the polymer