17 research outputs found

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Growth, cell division and sporulation in mycobacteria

    Get PDF
    Bacteria have the ability to adapt to different growth conditions and to survive in various environments. They have also the capacity to enter into dormant states and some bacteria form spores when exposed to stresses such as starvation and oxygen deprivation. Sporulation has been demonstrated in a number of different bacteria but Mycobacterium spp. have been considered to be non-sporulating bacteria. We recently provided evidence that Mycobacterium marinum and likely also Mycobacterium bovis bacillus Calmette–Guérin can form spores. Mycobacterial spores were detected in old cultures and our findings suggest that sporulation might be an adaptation of lifestyle for mycobacteria under stress. Here we will discuss our current understanding of growth, cell division, and sporulation in mycobacteria

    Ace Lake: three decades of research on a meromictic, Antarctic lake

    Get PDF
    Ace Lake (Vestfold Hills, Antarctica) has been investigated since the 1970s. Its close proximity to Davis Station has allowed year-long, as well as summer only, investigations. Ace Lake is a saline meromictic (permanently stratified) lake with strong physical and chemical gradients. The lake is one of the most studied lakes in continental Antarctica. Here we review the current knowledge of the history, the physical and chemical environment, community structure and functional dynamics of the mixolimnion, littoral benthic algal mats, the lower anoxic monimolimnion and the sediment within the monimolimnion. In common with other continental meromictic Antarctic lakes, Ace Lake possesses a truncated food web dominated by prokaryote and eukaryote microorganisms in the upper aerobic mixolimnion, and an anaerobic prokaryote community in the monimolimnion, where methanogenic Archaea, sulphate-reducing and sulphur-oxidizing bacteria occur. These communities are functional in winter at subzero temperatures, when mixotrophy plays an important role in survival in dominant photosynthetic eukaryotic microorganisms in the mixolimnion. The productivity of Ace Lake is comparable to other saline lakes in the Vestfold Hills, but higher than that seen in the more southerly McMurdo Dry Valley lakes. Finally we identify gaps in the current knowledge and avenues that demand further investigation, including comparisons with analogous lakes in the North Polar region

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    corecore