10 research outputs found

    Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes

    Get PDF
    Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases

    Suppression of Integrin alpha 3 beta 1 in Breast Cancer Cells Reduces Cyclooxygenase-2 Gene Expression and Inhibits Tumorigenesis, Invasion, and Cross-Talk to Endothelial Cells

    No full text
    Integrin receptors for cell adhesion to extracellular matrix have important roles in promoting tumor growth and progression. Integrin α3β1 is highly expressed in breast cancer cells where it is thought to promote invasion and metastasis; however, its roles in regulating malignant tumor cell behavior remain unclear. In the current study, we used short-hairpin RNA (shRNA) to show that suppression of α3β1 in a human breast cancer cell line, MDA-MB-231, leads to decreased tumorigenicity, reduced invasiveness, and decreased production of factors that stimulate endothelial cell migration. Real-time PCR revealed that suppression of α3β1 caused a dramatic reduction in expression of the cyclooxygenase-2 (COX-2) gene, which is frequently over-expressed in breast cancers and has been exploited as a therapeutic target. Decreased COX-2 was accompanied by reduced prostaglandin E2 (PGE(2)), a major prostanoid produced downstream of COX-2 and an important effector of COX-2 signaling. shRNA-mediated suppression of COX-2 showed that it has a role in tumor cell invasion and crosstalk to endothelial cells. Furthermore, treatment with PGE(2) restored these functions in α3β1-deficient MDA-MB-231 cells. These findings identify a role for α3β1 in regulating two properties of tumor cells that facilitate cancer progression: invasiveness and ability to stimulate endothelial cells. They also reveal a novel role for COX-2 as a downstream effector of α3β1 in tumor cells, thereby identifying α3β1 as a potential therapeutic target to inhibit breast cancer

    Integrin-mediated regulation of epidermal wound functions

    No full text

    Epidermal stem cells in wound healing and their clinical applications

    No full text
    corecore