963 research outputs found

    Champignonavl. En ny Produktion i Landbruget.

    Get PDF
    Champignonavl. En ny Produktion i Landbruget

    Life inside and out: making and breaking protein disulfide bonds in Chlamydia

    Full text link
    © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles

    Oxidoreductase disulfide bond proteins DsbA and DsbB form an active redox pair in Chlamydia trachomatis, a bacterium with disulfide dependent infection and development

    Get PDF
    © 2019 Christensen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Chlamydia trachomatis is an obligate intracellular bacterium with a distinctive biphasic developmental cycle that alternates between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body (RB). Members of the genus Chlamydia are dependent on the formation and degradation of protein disulfide bonds. Moreover, disulfide cross-linking of EB envelope proteins is critical for the infection phase of the developmental cycle. We have identified in C. trachomatis a homologue of the Disulfide Bond forming membrane protein Escherichia coli (E. coli) DsbB (hereafter named CtDsbB) and—using recombinant purified proteins—demonstrated that it is the redox partner of the previously characterised periplasmic oxidase C. trachomatis Disulfide Bond protein A (CtDsbA). CtDsbA protein was detected in C. trachomatis inclusion vacuoles at 20 h post infection, with more detected at 32 and similar levels at 44 h post infection as the developmental cycle proceeds. As a redox pair, CtDsbA and CtDsbB largely resemble their homologous counterparts in E. coli; CtDsbA is directly oxidised by CtDsbB, in a reaction in which both periplasmic cysteine pairs of CtDsbB are required for complete activity. In our hands, this reaction is slow relative to that observed for E. coli equivalents, although this may reflect a non-native expression system and use of a surrogate quinone cofactor. CtDsbA has a second non-catalytic disulfide bond, which has a small stabilising effect on the protein’s thermal stability, but which does not appear to influence the interaction of CtDsbA with its partner protein CtDsbB. Expression of CtDsbA during the RB replicative phase and during RB to EB differentiation coincided with the oxidation of the chlamydial outer membrane complex (COMC). Together with our demonstration of an active redox pairing, our findings suggest a potential role for CtDsbA and CtDsbB in the critical disulfide bond formation step in the highly regulated development cycle

    Structural and biochemical characterization of Chlamydia trachomatis DsbA reveals a cysteine-rich and weakly oxidising oxidoreductase

    Full text link
    Copyright © 2016 Christensen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The Gram negative bacteria Chlamydia trachomatis is an obligate intracellular human pathogen that can cause pelvic inflammatory disease, infertility and blinding trachoma. C. trachomatis encodes a homolog of the dithiol oxidoreductase DsbA. Bacterial DsbA proteins introduce disulfide bonds to folding proteins providing structural bracing for secreted virulence factors, consequently these proteins are potential targets for antimicrobial drugs. Despite sharing functional and structural characteristics, the DsbA enzymes studied to date vary widely in their redox character. In this study we show that the truncated soluble form of the predicted membrane anchored protein C. trachomatis DsbA (CtDsbA) has oxidase activity and redox properties broadly similar to other characterized DsbA proteins. However CtDsbA is distinguished from other DsbAs by having six cysteines, including a second disulfide bond, and an unusual dipeptide sequence in its catalytic motif (Cys-Ser-Ala-Cys). We report the 2.7 Å crystal structure of CtDsbA revealing a typical DsbA fold, which is most similar to that of DsbA-II type proteins. Consistent with this, the catalytic surface of CtDsbA is negatively charged and lacks the hydrophobic groove found in EcDsbA and DsbAs from other enterobacteriaceae. Biochemical characterization of CtDsbA reveals it to be weakly oxidizing compared to other DsbAs and with only a mildly destabilizing active site disulfide bond. Analysis of the crystal structure suggests that this redox character is consistent with a lack of contributing factors to stabilize the active site nucleophilic thiolate relative to more oxidizing DsbA proteins

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    Signatures of Star-planet interactions

    Full text link
    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within \sim10 stellar radii (\sim0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfv\'enic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The magnetic interactions appear as enhanced stellar activity modulated by the planet as it orbits the star rather than only by stellar rotation. These SPI effects are informative for the study of the internal dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet and rotational evolution of the star. As phase-resolved observational techniques are applied to a large statistical sample of hot Jupiter systems, extensions to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs become possible. In these systems, star-planet separations of tens of stellar radii begin to coincide with the radiative habitable zone where planetary magnetic fields are likely a necessary condition for surface habitability.Comment: Accepted for publication in the handbook of exoplanet

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Consequences of concurrent Ascaridia galli and Escherichia coli infections in chickens

    Get PDF
    Three experiments were carried out to examine the consequences of concurrent infections with Ascaridia galli and Escherichia coli in chickens raised for table egg production. Characteristic pathological lesions including airsacculitis, peritonitis and/or polyserositis were seen in all groups infected with E. coli. Furthermore, a trend for increased mortality rates was observed in groups infected with both organisms which, however, could not be confirmed statistically. The mean worm burden was significantly lower in combined infection groups compared to groups infected only with A. galli. It was also shown that combined infections of E. coli and A. galli had an added significant negative impact on weight gain

    Do Physicians Know When Their Diagnoses Are Correct?

    Get PDF
    This study explores the alignment between physicians' confidence in their diagnoses and the “correctness” of these diagnoses, as a function of clinical experience, and whether subjects were prone to over-or underconfidence. Design : Prospective, counterbalanced experimental design. Setting : Laboratory study conducted under controlled conditions at three academic medical centers. Participants : Seventy-two senior medical students, 72 senior medical residents, and 72 faculty internists. Intervention : We created highly detailed, 2-to 4-page synopses of 36 diagnostically challenging medical cases, each with a definitive correct diagnosis. Subjects generated a differential diagnosis for each of 9 assigned cases, and indicated their level of confidence in each diagnosis. Measurements And Main Results : A differential was considered “correct” if the clinically true diagnosis was listed in that subject's hypothesis list. To assess confidence, subjects rated the likelihood that they would, at the time they generated the differential, seek assistance in reaching a diagnosis. Subjects' confidence and correctness were “mildly” aligned (Κ=.314 for all subjects, .285 for faculty, .227 for residents, and .349 for students). Residents were overconfident in 41% of cases where their confidence and correctness were not aligned, whereas faculty were overconfident in 36% of such cases and students in 25%. Conclusions : Even experienced clinicians may be unaware of the correctness of their diagnoses at the time they make them. Medical decision support systems, and other interventions designed to reduce medical errors, cannot rely exclusively on clinicians' perceptions of their needs for such support.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74850/1/j.1525-1497.2005.30145.x.pd
    corecore