1,714 research outputs found
Durability Design Based on Serviceability Stage for Corroded Reinforced Concrete Structures
After analyzing such factors as the structural durability failure state, environmental load and resistance, the durability limit state equation considering steel corrosion initiation, concrete cover cracking and maximum corrosion-induced damage value is established to meet its durability service life requirements under chloride environment. For three different durability limit states, the design theory of reliability, the partial factors of variables for load and resistance are introduced to reflect the target reliability requirements of structural durability, and subsequently the partial factors expression form of structural durability design is established. According to the principle of the same reliability level for partial factors design and probability design, the determination method of partial factors for resistance and the values of resistance partial factors under different durability limit states are presented
Modelling the natural history of Huntington's disease progression.
BACKGROUND: The lack of reliable biomarkers to track disease progression is a major problem in clinical research of chronic neurological disorders. Using Huntington's disease (HD) as an example, we describe a novel approach to model HD and show that the progression of a neurological disorder can be predicted for individual patients. METHODS: Starting with an initial cohort of 343 patients with HD that we have followed since 1995, we used data from 68 patients that satisfied our filtering criteria to model disease progression, based on the Unified Huntington's Disease Rating Scale (UHDRS), a measure that is routinely used in HD clinics worldwide. RESULTS: Our model was validated by: (A) extrapolating our equation to model the age of disease onset, (B) testing it on a second patient data set by loosening our filtering criteria, (C) cross-validating with a repeated random subsampling approach and (D) holdout validating with the latest clinical assessment data from the same cohort of patients. With UHDRS scores from the past four clinical visits (over a minimum span of 2 years), our model predicts disease progression of individual patients over the next 2 years with an accuracy of 89-91%. We have also provided evidence that patients with similar baseline clinical profiles can exhibit very different trajectories of disease progression. CONCLUSIONS: This new model therefore has important implications for HD research, most obviously in the development of potential disease-modifying therapies. We believe that a similar approach can also be adapted to model disease progression in other chronic neurological disorders.This study was supported by the Cotswold Trust, the Rosetrees Trust, donations to the Huntington’s disease clinic in the John van Geest Centre for Brain Repair, and NIHR award of the Biomedical Research Centre - Cambridge University NHS Foundation Trust. This project was also supported by EPSRC through projects EP/I03210X/1 and EP/G066477/1.This article has been accepted for publication in Journal of Neurology, Neurosurgery, and Psychiatry, following peer review. The definitive copyedited, typeset version J Neurol Neurosurg Psychiatry doi:10.1136/jnnp-2014-308153 is available online at: http://jnnp.bmj.com/content/early/2014/12/16/jnnp-2014-308153.long
Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro
published_or_final_versio
The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch
The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with Ssubstitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening
Improved isolation of cadmium from paddy soil by novel technology based on pore water drainage with graphite-contained electro-kinetic geosynthetics
Novel soil remediation equipment based on electro-kinetic geosynthetics (EKG) was developed for in situ isolation of metals from paddy soil. Two mutually independent field plot experiments A and B (with and without electric current applied) were conducted. After saturation using ferric chloride (FeCl3) and calcium chloride (CaCl2), soil water drainage capacity, soil cadmium (Cd) removal performance, energy consumption as well as soil residual of iron (Fe) and chloride (Cl) were assessed. Cadmium dissolved in the soil matrix and resulted in a 100% increase of diethylenetriamine-pentaacetic acid (DTPA) extracted phyto-available Cd. The total soil Cd content reductions were 15.20% and 26.58% for groups A and B, respectively, and electric field applications resulted in a 74.87% increase of soil total Cd removal. The electric energy consumption was only 2.17 kWh/m3 for group B. Drainage by gravity contributed to > 90% of the overall soil dewatering capacity. Compared to conventional electro-kinetic technology, excellent and fast soil water drainage resulted in negligible hydrogen ion (H+) and hydroxide ion (OH−) accumulation at nearby electrode zones, which addressed the challenge of anode corrosion and cathode precipitation of soil metals. External addition of FeCl3 and CaCl2 caused soil Fe and Cl residuals and led to 4.33–7.59% and 139–172% acceptable augments in soil total Fe and Cl content, correspondingly, if compared to original untreated soils. Therefore, the novel soil remediation equipment developed based on EKG can be regarded as a promising new in situ technology for thoroughly isolating metals from large-scale paddy soil fields
Transverse electric field–induced deformation of armchair single-walled carbon nanotube
The deformation of armchair single-walled carbon nanotube under transverse electric field has been investigated using density functional theory. The results show that the circular cross-sections of the nanotubes are deformed to elliptic ones, in which the tube diameter along the field direction is increased, whereas the diameter perpendicular to the field direction is reduced. The electronic structures of the deformed nanotubes were also studied. The ratio of the major diameter to the minor diameter of the elliptic cross-section was used to estimate the degree of the deformation. It is found that this ratio depends on the field strength and the tube diameter. However, the field direction has little role in the deformation
Effective Interventions and Decline of Antituberculosis Drug Resistance in Eastern Taiwan, 2004–2008
BACKGROUND: The Taiwan health authority recently launched several tuberculosis (TB) control interventions, which may have an impact on the epidemic of drug-resistant TB. We conducted a population-based antituberculosis drug resistance surveillance program in Eastern Taiwan to measure the proportions of notified TB patients with anti-TB drug resistance and the trend from 2004 to 2008. METHODS AND FINDINGS: All culture-positive TB patients were enrolled. Drug susceptibility testing results of the first isolate of each TB patient in each treatment course were analyzed. In total, 2688 patients were included, of which 2176 (81.0%) were new TB cases and 512 (19.0%) were previously treated cases. Among the 2176 new TB cases, 97 (4.5%) were retreated after the first episode of TB treatment within the study period. The proportion of new patients with any resistance, isoniazid resistance but not multidrug-resistant TB (resistant to at least isoniazid and rifampin, MDR-TB), and MDR-TB was 16.4%, 7.5%, and 4.0%, respectively, and that among previously treated cases was 30.9%, 7.9%, and 17.6%, respectively. The combined proportion of any resistance decreased from 23.3% in 2004 to 14.3% in 2008, and that of MDR-TB from 11.5% to 2.4%. CONCLUSIONS: The proportion of TB patients with drug-resistant TB in Eastern Taiwan remains substantial. However, an effective TB control program has successfully driven the proportion of drug resistance among TB patients downward
A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal
Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal
MR imaging features of benign retroperitoneal extra-adrenal paragangliomas
The goal of this study was to retrospectively review the magnetic resonance imaging (MRI) features of retroperitoneal extra-adrenal paragangliomas and to evaluate the diagnostic capabilities of MRI. Twenty-four patients with confirmed benign retroperitoneal extra-adrenal paragangliomas who underwent preoperative MRI and surgical resection were enrolled. The patients’ clinical characteristics and MRI features were reviewed by two radiologists. There were no significant differences in the qualitative and quantitative MRI features were determined by the reviewers. High signal intensity in T2- weighted imaging (T2WI) and diffusion-weighted imaging (DWI) was observed in all tumors. In contrast T1-weighted imaging (T1WI) in the arterial phase, 83.33% of the tumors were clearly enhanced. In 87.5% of cases, a persistent enhancement pattern was observed in the venous and delayed phases, and 12.5% of tumors showed a “washout” pattern. The tumor capsule, intratumoral septum and degenerations were visualized in the tumors and may be helpful in the qualitative diagnosis of extraadrenal paragangliomas in MRI. MRI was useful in locating the position, determining the tumor ranges and visualizing the relationship between the tumors and adjacent structures. The presence of typical clinical symptoms and positivity of biochemical tests are also important factors in making an accurate preoperative diagnosis
- …