956 research outputs found
Integer and half-integer flux-quantum transitions in a niobium/iron-pnictide loop
The recent discovery of iron-based superconductors challenges the existing
paradigm of high-temperature superconductivity. Owing to their unusual
multi-orbital band structure, magnetism, and electron correlation, theories
propose a unique sign reversed s-wave pairing state, with the order parameter
changing sign between the electron and hole Fermi pockets. However, because of
the complex Fermi surface topology and material related issues, the predicted
sign reversal remains unconfirmed. Here we report a novel phase-sensitive
technique for probing unconventional pairing symmetry in the polycrystalline
iron-pnictides. Through the observation of both integer and half-integer
flux-quantum transitions in composite niobium/iron-pnictide loops, we provide
the first phase-sensitive evidence of the sign change of the order parameter in
NdFeAsO0.88F0.12, lending strong support for microscopic models predicting
unconventional s-wave pairing symmetry. These findings have important
implications on the mechanism of pnictide superconductivity, and lay the
groundwork for future studies of new physics arising from the exotic order in
the FeAs-based superconductors.Comment: 23 pages, including 4 figures and supplementary informatio
DNA mediated chromatin pull-down for the study of chromatin replication
Chromatin replication involves duplicating DNA while maintaining epigenetic information. These processes are critical for genome stability and for preserving cell-type identity. Here we describe a simple experimental approach that allows chromatin to be captured and its content analysed after in vivo replication and labeling of DNA by cellular DNA polymerases. We show that this technique is highly specific and that proteins bound to the replicated DNA can be analyzed by both immunological techniques and large scale mass spectrometry. As proof of concept we have used this novel procedure to begin investigating the relationship between chromatin protein composition and the temporal programme of DNA replication in human cells. It is expected that this technique will become a widely used tool to address how chromatin proteins assemble onto newly replicated DNA after passage of a replication fork and how chromatin maturation is coupled to DNA synthesis
QCD corrections to plus -boson production at the LHC
The associated production at the LHC is an important process in
investigating the color-octet mechanism of non-relativistic QCD in describing
the processes involving heavy quarkonium. We calculate the next-to-leading
order (NLO) QCD corrections to the associated production at the
LHC within the factorization formalism of nonrelativistic QCD, and provide the
theoretical predictions for the distribution of the transverse
momentum. Our results show that the differential cross section at the
leading-order is significantly enhanced by the NLO QCD corrections. We conclude
that the LHC has the potential to verify the color-octet mechanism by measuring
the production events.Comment: 14 page revtex, 5 eps figures, to appear in JHEP. fig5 and the
corresponding analysis are correcte
Vomiting and wasting disease associated with hemagglutinating encephalomyelitis viruses infection in piglets in jilin, china
One coronavirus strain was isolated from brain tissues of ten piglets with evident clinical manifestations of vomiting, diarrhea and dyskinesia in Jilin province in China. Antigenic and genomic characterizations of the virus (isolate PHEV-JLsp09) were based on multiplex PCR and negative staining electron microscopy and sequence analysis of the Hemagglutinin-esterase (HE) gene. These piglets were diagnosed with Porcine hemagglutinating encephalomyelitis virus (PHEV)
Investigation of Polyurea-Crosslinked Silica Aerogels as a Neuronal Scaffold: A Pilot Study
BACKGROUND: Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated. METHODOLOGY: In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration
Synthesis, Biological Evaluation and Mechanism Studies of Deoxytylophorinine and Its Derivatives as Potential Anticancer Agents
Previous studies indicated that (+)-13a-(S)-Deoxytylophorinine (1) showed profound anti-cancer activities both in vitro and in vivo and could penetrate the blood brain barrier to distribute well in brain tissues. CNS toxicity, one of the main factors to hinder the development of phenanthroindolizidines, was not obviously found in 1. Based on its fascinating activities, thirty-four derivatives were designed, synthesized; their cytotoxic activities in vitro were tested to discover more excellent anticancer agents. Considering the distinctive mechanism of 1 and interesting SAR of deoxytylophorinine and its derivatives, the specific impacts of these compounds on cellular progress as cell signaling transduction pathways and cell cycle were proceeded with seven representative compounds. 1 as well as three most potent compounds, 9, 32, 33, and three less active compounds, 12, 16, 35, were selected to proform this study to have a relatively deep view of cancer cell growth-inhibitory characteristics. It was found that the expressions of phospho-Akt, Akt, phospho-ERK, and ERK in A549 cells were greater down-regulated by the potent compounds than by the less active compounds in the Western blot analysis. To the best of our knowledge, this is the first report describing phenanthroindolizidines alkaloids display influence on the crucial cell signaling proteins, ERK. Moreover, the expressions of cyclin A, cyclin D1 and CDK2 proteins depressed more dramatically when the cells were treated with 1, 9, 32, and 33. Then, these four excellent compounds were subjected to flow cytometric analysis, and an increase in S-phase was observed in A549 cells. Since the molecular level assay results of Western blot for phospho-Akt, Akt, phospho-ERK, ERK, and cyclins were relevant to the potency of compounds in cellular level, we speculated that this series of compounds exhibit anticancer activities through blocking PI3K and MAPK signaling transduction pathways and interfering with the cell cycle progression
Transverse electric field–induced deformation of armchair single-walled carbon nanotube
The deformation of armchair single-walled carbon nanotube under transverse electric field has been investigated using density functional theory. The results show that the circular cross-sections of the nanotubes are deformed to elliptic ones, in which the tube diameter along the field direction is increased, whereas the diameter perpendicular to the field direction is reduced. The electronic structures of the deformed nanotubes were also studied. The ratio of the major diameter to the minor diameter of the elliptic cross-section was used to estimate the degree of the deformation. It is found that this ratio depends on the field strength and the tube diameter. However, the field direction has little role in the deformation
- …