18 research outputs found

    At the poles across kingdoms: phosphoinositides and polar tip growth

    Full text link

    Characterisation of Pyroelectric Materials

    No full text
    Pyroelectrics form a very broad class of materials. Any material which has a crystal structure possessing a polar point symmetry—i.e. one which both lacks a centre of symmetry and has a unique axis of symmetry—will possess an intrinsic, or spontaneous, polarisation and show the pyroelectric effect. The pyroelectric effect is a change in that spontaneous polarisation caused by a change in temperature. It is manifested as the appearance of free charge at the surfaces of the material, or a flow of current in an external circuit connected to it. The effect is a simple one, but it has been used in a range of sensing devices, most notably uncooled pyroelectric infra-red (PIR) sensors, and has thus come to be of some engineering and economic significance, enabling a wide range of sensing systems, ranging from burglar alarms through FTIR spectroscopic instruments to thermal imagers
    corecore