39 research outputs found
Influence of Prototropic Reactions on the Absorption and Fluorescence Spectra of Methyl p-dimethylaminobenzoate and Its Two Ortho Derivatives
The influence of prototropic reactions on the spectral characteristics of methyl p-dimethylaminobenzoate (I) and its o-methoxy (II) and o-hydroxy (III) derivatives has been studied using steady-state spectroscopic technique and quantum-chemical calculations. This study concerns the solvent-induced shift of the absorption, locally excited (LE) and intramolecular charge transfer (ICT) fluorescence bands in the neat tetrahydrofuran (THF) and its hydrochloric acid solutions at different HCl concentrations. On the basis of the experimental results and quantum-chemical calculations, it was shown that in a hydrochloric acid solution the studied molecules exist as a mixture of neutral, mono-, and dicationic forms. Additionally, the results of spectroscopic measurements were used to calculate, according to the Benesi-Hildebrand method, the equilibrium constants of protopropic reactions in the ground, S0, and excited, S1, states. Our findings predestine molecules I and II to be used as acid fluorescence probes in a region of 0–2.5 M of [H+] concentrations
Potential range of impact of an ecological trap network: the case of timber stacks and the Rosalia longicorn
Although the negative impact of timber stacks on populations of saproxylic beetles is a well-known phenomenon, there is
relatively little data concerning the scale of this impact and its spatial aspect. Beech timber stored in the vicinity of the forest
can act as an ecological trap for the Rosalia longicorn (Rosalia alpina), so in this study we have attempted to determine the
spatial range of the impact of a network of timber stacks. Timber stacks in the species’ range in the study area were listed
and monitored during the adult emergence period in 2014–2016. Based on published data relating to the species’ dispersal
capabilities, buffers of four radii (500, 1000, 1600, 3000 m) were delineated around the stacks and the calculated ranges of
potential impact. The results show that the percentage of currently known localities of the Rosalia longicorn impacted by
stacks varies from 19.7 to 81.6%, depending on the assumed impact radius. The percentage of forest influenced by timber
stacks was 77% for the largest-radius buffer. The overall impact of the ecological trap network is accelerated by fragmentation
of the impact-free area. It was also found that forests situated close to the timber stacks where the Rosalia longicorn was
recorded were older and more homogeneous in age and species composition than those around stacks where the species was
absent. Such results suggest that timber stacks act as an ecological trap in the source area of the local population
Recommended from our members
North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land–atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions
Recommended from our members
North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land–atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions