134 research outputs found
Exoplanet Catalogues
One of the most exciting developments in the field of exoplanets has been the
progression from 'stamp-collecting' to demography, from discovery to
characterisation, from exoplanets to comparative exoplanetology. There is an
exhilaration when a prediction is confirmed, a trend is observed, or a new
population appears. This transition has been driven by the rise in the sheer
number of known exoplanets, which has been rising exponentially for two decades
(Mamajek 2016). However, the careful collection, scrutiny and organisation of
these exoplanets is necessary for drawing robust, scientific conclusions that
are sensitive to the biases and caveats that have gone into their discovery.
The purpose of this chapter is to discuss and demonstrate important
considerations to keep in mind when examining or constructing a catalogue of
exoplanets. First, we introduce the value of exoplanetary catalogues. There are
a handful of large, online databases that aggregate the available exoplanet
literature and render it digestible and navigable - an ever more complex task
with the growing number and diversity of exoplanet discoveries. We compare and
contrast three of the most up-to-date general catalogues, including the data
and tools that are available. We then describe exoplanet catalogues that were
constructed to address specific science questions or exoplanet discovery space.
Although we do not attempt to list or summarise all the published lists of
exoplanets in the literature in this chapter, we explore the case study of the
NASA Kepler mission planet catalogues in some detail. Finally, we lay out some
of the best practices to adopt when constructing or utilising an exoplanet
catalogue.Comment: 14 pages, 6 figures. Invited review chapter, to appear in "Handbook
of Exoplanets", edited by H.J. Deeg and J.A. Belmonte, section editor N.
Batalh
Transit Photometry as an Exoplanet Discovery Method
Photometry with the transit method has arguably been the most successful
exoplanet discovery method to date. A short overview about the rise of that
method to its present status is given. The method's strength is the rich set of
parameters that can be obtained from transiting planets, in particular in
combination with radial velocity observations; the basic principles of these
parameters are given. The method has however also drawbacks, which are the low
probability that transits appear in randomly oriented planet systems, and the
presence of astrophysical phenomena that may mimic transits and give rise to
false detection positives. In the second part we outline the main factors that
determine the design of transit surveys, such as the size of the survey sample,
the temporal coverage, the detection precision, the sample brightness and the
methods to extract transit events from observed light curves. Lastly, an
overview over past, current and future transit surveys is given. For these
surveys we indicate their basic instrument configuration and their planet
catch, including the ranges of planet sizes and stellar magnitudes that were
encountered. Current and future transit detection experiments concentrate
primarily on bright or special targets, and we expect that the transit method
remains a principal driver of exoplanet science, through new discoveries to be
made and through the development of new generations of instruments.Comment: Review chapte
Persistent Cellular Motion Control and Trapping Using Mechanotactic Signaling
Chemotactic signaling and the associated directed cell migration have been extensively studied owing to their importance in emergent processes of cellular aggregation. In contrast, mechanotactic signaling has been relatively overlooked despite its potential for unique ways to artificially signal cells with the aim to effectively gain control over their motile behavior. The possibility of mimicking cellular mechanotactic signals offers a fascinating novel strategy to achieve targeted cell delivery for in vitro tissue growth if proven to be effective with mammalian cells. Using (i) optimal level of extracellular calcium ([Ca2[superscript +] ][subscript ext] = 3 mM) we found, (ii) controllable fluid shear stress of low magnitude (σ < 0.5 Pa), and (iii) the ability to swiftly reverse flow direction (within one second), we are able to successfully signal Dictyostelium discoideum amoebae and trigger migratory responses with heretofore unreported control and precision. Specifically, we are able to systematically determine the mechanical input signal required to achieve any predetermined sequences of steps including straightforward motion, reversal and trapping. The mechanotactic cellular trapping is achieved for the first time and is associated with a stalling frequency of 0.06 ~ 0.1 Hz for a reversing direction mechanostimulus, above which the cells are effectively trapped while maintaining a high level of directional sensing. The value of this frequency is very close to the stalling frequency recently reported for chemotactic cell trapping [Meier B, et al. (2011) Proc Natl Acad Sci USA 108:11417–11422], suggesting that the limiting factor may be the slowness of the internal chemically-based motility apparatus.SUTD-MIT International Design Centre (Grant IDG31400104
Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of Radiation Therapy Oncology Group-Recursive Partitioning Analysis in the IMRT and temozolomide era
Since the development of the Radiation Therapy Oncology Group-Recursive Partitioning Analysis (RTOG-RPA) risk classes for high-grade glioma, radiation therapy in combination with temozolomide (TMZ) has become standard care. While this combination has improved survival, the prognosis remains poor in the majority of patients. Therefore, strong interest in high-grade gliomas from basic research to clinical trials persists. We sought to evaluate whether the current RTOG-RPA retains prognostic significance in the TMZ era or alternatively, if modifications better prognosticate the optimal selection of patients with similar baseline prognosis for future clinical protocols. The records of 159 patients with newly-diagnosed glioblastoma (GBM, WHO grade IV) or anaplastic astrocytoma (AA, WHO grade III) were reviewed. Patients were treated with intensity-modulated radiation therapy (IMRT) and concurrent followed by adjuvant TMZ (n = 154) or adjuvant TMZ only (n = 5). The primary endpoint was overall survival. Three separate analyses were performed: (1) application of RTOG-RPA to the study cohort and calculation of subsequent survival curves, (2) fit a new tree model with the same predictors in RTOG-RPA, and (3) fit a new tree model with an expanded predictor set. All analyses used a regression tree analysis with a survival outcome fit to formulate new risk classes. Overall median survival was 14.9 months. Using the RTOG-RPA, the six classes retained their relative prognostic significance and overall ordering, with the corresponding survival distributions significantly different from each other (P < 0.01, χ2 statistic = 70). New recursive partitioning limited to the predictors in RTOG-RPA defined four risk groups based on Karnofsky Performance Status (KPS), histology, age, length of neurologic symptoms, and mental status. Analysis across the expanded predictors defined six risk classes, including the same five variables plus tumor location, tobacco use, and hospitalization during radiation therapy. Patients with excellent functional status, AA, and frontal lobe tumors had the best prognosis. For patients with newly-diagnosed high-grade gliomas, RTOG-RPA classes retained prognostic significance in patients treated with TMZ and IMRT. In contrast to RTOG-RPA, in our modified RPA model, KPS rather than age represented the initial split. New recursive partitioning identified potential modifications to RTOG-RPA that should be further explored with a larger data set
Early toxicity predicts long-term survival in high-grade glioma
BACKGROUND: Patients with high-grade gliomas are treated with surgery followed by chemoradiation. The risk factors and implications of neurological side effects are not known.
METHODS: Acute and late ≥ grade 3 neurological toxicities (NTs) were analysed among 2761 patients from 14 RTOG trials accrued from 1983 to 2003. The association between acute and late toxicity was analysed using a stepwise logistic regression model. The association between the occurrence of acute NT and survival was analysed as an independent variable.
RESULTS: There were 2610 analysable patients (86% glioblastoma, 10% anaplastic astrocytoma). All received a systemic agent during radiation (83% chemotherapy, 17% biological agents). Median radiation dose was 60 Gy. There were 182 acute and 83 late NT events. On univariate analysis, older age, poor performance status, aggressive surgery, pre-existing neurological dysfunction, poor mental status and twice-daily radiation were associated with increased acute NT. In a stepwise logistic regression model the occurrence of acute NT was significantly associated with late NT (OR=2.40; 95% CI=1.2-4.8; P=0.014). The occurrence of acute NT predicted poorer overall survival, independent of recursive partitioning analysis class (median 7.8 vs 11.8 months).
INTERPRETATION: Acute NT is significantly associated with both late NT and overall survival
Planetary population synthesis
In stellar astrophysics, the technique of population synthesis has been
successfully used for several decades. For planets, it is in contrast still a
young method which only became important in recent years because of the rapid
increase of the number of known extrasolar planets, and the associated growth
of statistical observational constraints. With planetary population synthesis,
the theory of planet formation and evolution can be put to the test against
these constraints. In this review of planetary population synthesis, we first
briefly list key observational constraints. Then, the work flow in the method
and its two main components are presented, namely global end-to-end models that
predict planetary system properties directly from protoplanetary disk
properties and probability distributions for these initial conditions. An
overview of various population synthesis models in the literature is given. The
sub-models for the physical processes considered in global models are
described: the evolution of the protoplanetary disk, the planets' accretion of
solids and gas, orbital migration, and N-body interactions among concurrently
growing protoplanets. Next, typical population synthesis results are
illustrated in the form of new syntheses obtained with the latest generation of
the Bern model. Planetary formation tracks, the distribution of planets in the
mass-distance and radius-distance plane, the planetary mass function, and the
distributions of planetary radii, semimajor axes, and luminosities are shown,
linked to underlying physical processes, and compared with their observational
counterparts. We finish by highlighting the most important predictions made by
population synthesis models and discuss the lessons learned from these
predictions - both those later observationally confirmed and those rejected.Comment: 47 pages, 12 figures. Invited review accepted for publication in the
'Handbook of Exoplanets', planet formation section, section editor: Ralph
Pudritz, Springer reference works, Juan Antonio Belmonte and Hans Deeg, Ed
Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae)
Background: Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae) have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla) in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase.
Results: The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their postsettlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage.
Conclusion: Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the coral reef offering a wide range of feeding habits, promotes increasing shape disparity of the head skeleton over the ontogeny of fishes
The swimming kinematics of larval Atlantic cod, Gadus morhua L., are resilient to elevated seawater pCO2
Kinematics of swimming behavior of larval Atlantic cod, aged 12 and 27 days post-hatch (dph) and cultured under three pCO2 conditions (control-370, medium-1800, and high-4200 μatm) from March to May 2010, were extracted from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for swim duration, distance and speed, stop duration, and horizontal and vertical turn angles to determine whether elevated seawater pCO2—at beyond near-future ocean acidification levels—affects the swimming kinematics of Atlantic cod larvae. There were no significant differences in most of the variables tested: the swimming kinematics of Atlantic cod larvae at 12 and 27 dph were highly resilient to extremely elevated pCO2 levels. Nonetheless, cod larvae cultured at the highest pCO2 concentration displayed vertical turn angles that were more restricted (median turn angle, 15°) than larvae in the control (19°) and medium (19°) treatments at 12 dph (but not at 27 dph). Significant reduction in the stop duration of cod larvae from the high treatment (median stop duration, 0.28 s) was also observed compared to the larvae from the control group (0.32 s) at 27 dph (but not at 12 dph). The functional and ecological significance of these subtle differences are unclear and, therefore, require further investigation in order to determine whether they are ecologically relevant or spurious
Hemi-Castaing ligamentoplasty for the treatment of chronic lateral ankle instability: a retrospective assessment of outcome
Purpose: In the treatment of chronic ankle instability, most non-anatomical reconstructions use the peroneus brevis tendon. This, however, sacrifices the natural ankle stabilising properties of the peroneus brevis muscle. The aim of this study was to evaluate the functional outcome of patients treated with a hemi-Castaing procedure, which uses only half the peroneus brevis tendon. Methods: We performed a retrospective cohort study of patients who underwent hemi-Castaing ligamentoplasty for chronic lateral ankle instability between 1993 and 2010, with a minimum of one year follow-up. Patients were sent a postal questionnaire comprising five validated outcome measures: Olerud-Molander Ankle Score (OMAS), Karlsson Ankle Functional Score (KAFS), Tegner Activity Level Score (pre-injury, prior to surgery, at follow-up), visual analog scale on pain (VAS) and the Short Form 36 (SF-36). Results: Twenty patients completed the questionnaire on functional outcome. The OMAS showed good to excellent outcome in 80% and the KAFS in 65%, the Tegner Score improved from surgery but did not reach pre-injury levels, the VAS on pain was 1 of 10 and the SF-36 returned to normal compared with the average population. Conclusions: Even though most patients were satisfied with the results, outcome at long-term follow-up was less favourable compared with the literature on anatomical reconstructions. In accordance with the literature, we therefore conclude that the initial surgical treatment of chronic lateral ankle instability should be an anatomical repair with augmentation (i.e. the Broström-Gould technique) and the non-anatomical repair should be reserved for unsuccessful cases after anatomical repair or in cases where no adequate ligament remnants are available for reconstruction
knowledge spillovers congestion effects and long run location patterns
We introduce an evolutionary two-country model to characterize long run location patterns of the manufacturing activities of competing multinational enterprises. Firms located in country 1 can decide to offshore their manufacturing activities to country 2. The profitability of production in a country depends on several factors: unitary costs of production, the number of firms that are located in each country, within-country spillovers, and cross-border spillovers. Furthermore, profits in country 2 are influenced by congestion costs. Country 1 is assumed to be technologically advanced and has an advantage in terms of internal spillovers. In contrast, country 2 offers lower production unit cost which, however, may be offset by congestion costs. The firms' (re)location choices are based on a simple comparison of current production costs obtained in the two countries and the dynamics of switching is modeled by a simple replicator dynamics. The global analysis of the resulting one-dimensional dynamical system reveals that a large advantage in terms of unitary production costs encourages the firms to off-shore manufacturing activities to country 2. This off-shoring process stops when congestion costs offset this advantage of country 2, even though congestion costs do not cause all manufacturing activities to be re-shored to country 1. The re-shoring process can be accelerated by an increase of within-country spillovers in country 1, while cross-border spillovers tend to favor a geographic dispersion of manufacturing activities and make location patterns that lead to suboptimal long run outcomes less likely
- …