67,212 research outputs found
Optical system for space simulator Patent Application
Optical system for increasing light beam intensity within solar simulator
Josephson effect in ballistic graphene
We solve the Dirac-Bogoliubov-De-Gennes equation in an impurity-free
superconductor-normal-superconductor (SNS) junction, to determine the maximal
supercurrent that can flow through an undoped strip of graphene with heavily
doped superconducting electrodes. The result is determined by the
superconducting gap and by the aspect ratio of the junction (length L, small
relative to the width W and to the superconducting coherence length). Moving
away from the Dirac point of zero doping, we recover the usual ballistic result
in which the Fermi wave length takes over from L. The product of critical
current and normal-state resistance retains its universal value (up to a
numerical prefactor) on approaching the Dirac point.Comment: 4 pages, 2 figure
The effect of equine hyperimmune sera on TNF alpha activity in a L929 cell bioassay
In this pilot study we examined the effect of sera from a proprietary hyperimmune plasma product (Equiplas) on the activity of TNF: in an in vitro L929 cell bioassay. In brief, we report observations from 2 accessions of sera. Accession 1 describes the antiTNF: activity of 3 hyperimmune sera and an untreated serum sample that were provided blind to the study. Accession 2 reports a comparison of antiTNFalpha activity found in 3 paired hyperimmune sera collected following a multiple endotoxin vaccination regimen
All-optical non-demolition measurement of single-hole spin in a quantum-dot molecule
We propose an all-optical scheme to perform a non-demolition measurement of a
single hole spin localized in a quantum-dot molecule. The latter is embedded in
a microcavity and driven by two lasers. This allows to induce Raman transitions
which entangle the spin state with the polarization of the emitted photons. We
find that the measurement can be completed with high fidelity on a timescale of
100 ps, shorter than the typical T2. Furthermore, we show that the scheme can
be used to induce and observe spin oscillations without the need of
time-dependent magnetic fields
Recommended from our members
The Veterans Affairs Neuropathy Scale: A Reliable, Remote Polyneuropathy Exam.
Introduction: Polyneuropathy (PN) complaints are common, prompting many referrals for neurologic evaluation. To improve access of PN care in distant community clinics, we developed a telemedicine service (patient-clinician interactions using real-time videoconference technology) for PN. The primary goal of this study was to construct a remote exam for PN that is feasible, reliable, and concordant with in-person assessments for use in our tele-PN clinics. Methods: To construct the VA Neuropathy Scale (VANS), we searched the literature for existing, validated PN assessments. From these assessments, we selected a parsimonious set of exam elements based on literature-reported sensitivity and specificity of PN detection, with modifications as necessary for our teleneurology setting (i.e., a technician examination under the direction of a neurologist). We recruited 28 participants with varying degrees of PN to undergo VANS testing under 5 scenarios. The 5 scenarios differed by mode of VANS grading (in-person vs. telemedicine) and by the in-person examiner type (neurologist vs. technician) in telemedicine scenarios. We analyzed concordance between the VANS and a person's medical chart-derived PN status by modeling the receiver operating characteristic (ROC) curve. We analyzed reliability of the VANS by mixed effects regression and computing the intraclass correlation coefficient (ICC) of scores across the 5 scenarios. Results: The VA Neuropathy Scale (VANS) tests balance, gait, reflexes, foot inspection, vibration, and pinprick. Possible scores range from 0 to 50 (worst). From the ROC curve, a cutoff of >2 points on the VANS sets the sensitivity and specificity of detecting PN at 98 and 91%, respectively. There is a small (1.3 points) but statistically significant difference in VANS scoring between in-person and telemedicine grading scenarios. For telemedicine grading scenarios, there is no difference in VANS scores between neurologist and technician examinations. The ICC is 0.89 across all scenarios. Discussion: The VANS, informed by existing PN instruments, is a promising clinical assessment tool for diagnosing and monitoring the severity of PN in telemedicine settings. This pilot study indicates acceptable concordance and reliability of the VANS with in-person examinations
SWKB Quantization Rules for Bound States in Quantum Wells
In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix
formulation of the Bohr-Sommerfield quantization rule has been applied to the
study of bound states in one dimension quantum wells. Here we study these
potentials in the frame work of supersymmetric WKB (SWKB) quantization
approximation and find that SWKB quantization rule is superior to the modified
Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.Comment: 8 page
An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements
We have constructed a new type of amplifier whose primary purpose is the
readout of superconducting quantum bits. It is based on the transition of an
RF-driven Josephson junction between two distinct oscillation states near a
dynamical bifurcation point. The main advantages of this new amplifier are
speed, high-sensitivity, low back-action, and the absence of on-chip
dissipation. Pulsed microwave reflection measurements on nanofabricated Al
junctions show that actual devices attain the performance predicted by theory.Comment: 5 Figure
- …