1,458 research outputs found

    Influence of decreasing nutrient path length on the development of engineered cartilage

    Get PDF
    SummaryObjectiveChondrocyte-seeded agarose constructs of 4mm diameter (2.34mm thickness) develop spatially inhomogeneous material properties with stiffer outer edges and a softer central core suggesting nutrient diffusion limitations to the central construct region [Guilak F, Sah RL, Setton LA. Physical regulation of cartilage metabolism. In: Mow VC, Hayes WC, Eds. Basic Orthopaedic Biomechanics, Philadelphia 1997;179–207.]. The effects of reducing construct thickness and creating channels running through the depth of the thick constructs were examined.MethodsIn Study 1, the properties of engineered cartilage of 0.78mm (thin) or 2.34mm (thick) thickness were compared. In Study 2, a single nutrient channel (1mm diameter) was created in the middle of each thick construct. In Study 3, the effects of channels on larger 10mm diameter, thick constructs were examined.ResultsThin constructs developed superior mechanical and biochemical properties than thick constructs. The channeled constructs developed significantly higher mechanical properties vs control channel-free constructs while exhibiting similar glycosaminoglycan (GAG) and collagen content. Collagen staining suggested that channels resulted in a more uniform fibrillar network. Improvements in constructs of 10mm diameter were similarly observed.ConclusionsThis study demonstrated that more homogeneous tissue-engineered cartilage constructs with improved mechanical properties can be achieved by reducing their thickness or incorporating macroscopic nutrient channels. Our data further suggests that these macroscopic channels remain open long enough to promote this enhanced tissue development while exhibiting the potential to refill with cell elaborated matrix with additional culture time. Together with reports that <3mm defects in cartilage heal in vivo and that irregular holes are associated with clinically used osteochondral graft procedures, we anticipate that a strategy of incorporating macroscopic channels may aid the development of clinically relevant engineered cartilage with functional properties

    On the Couplings of Vector Mesons in AdS/QCD

    Full text link
    We address, in the AdS/CFT context, the issue of the universality of the couplings of the rho meson to other hadrons. Exploring some models, we find that generically the rho-dominance prediction f_\rho g_{\rho H H}=m_\rho^2 does not hold, and that g_{\rho H H} is not independent of the hadron H. However, we prove that, in any model within the AdS/QCD context, there are two limiting regimes where the g_{\rho H H}, along with the couplings of all excited vector mesons as well, become H-independent: (1) when H is created by an operator of large dimension, and (2) when H is a highly-excited hadron. We also find a sector of a particular model where universality for the rho coupling is exact. Still, in none of these cases need it be true that f_\rho g_\rho=m_\rho^2, although we find empirically that the relation does hold approximately (up to a factor of order two) within the models we have studied.Comment: 28 pages, 3 figures. ver 2: Comments about the commutability of two universal limits in the D3/D7 case corrected. Typos corrected. ver 3: Substantive revisions of certain calculations, with improved conventions, correction of typos, clarifications, new formulas, new figures; no changes in essential results or conclusion

    Research of Gravitation in Flat Minkowski Space

    Full text link
    In this paper it is introduced and studied an alternative theory of gravitation in flat Minkowski space. Using an antisymmetric tensor, which is analogous to the tensor of electromagnetic field, a non-linear connection is introduced. It is very convenient for studying the perihelion/periastron shift, deflection of the light rays near the Sun and the frame dragging together with geodetic precession, i.e. effects where angles are involved. Although the corresponding results are obtained in rather different way, they are the same as in the General Relativity. The results about the barycenter of two bodies are also the same as in the General Relativity. Comparing the derived equations of motion for the nn-body problem with the Einstein-Infeld-Hoffmann equations, it is found that they differ from the EIH equations by Lorentz invariant terms of order c2c^{-2}.Comment: 28 page

    Early Stages of Homopolymer Collapse

    Full text link
    Interest in the protein folding problem has motivated a wide range of theoretical and experimental studies of the kinetics of the collapse of flexible homopolymers. In this Paper a phenomenological model is proposed for the kinetics of the early stages of homopolymer collapse following a quench from temperatures above to below the theta temperature. In the first stage, nascent droplets of the dense phase are formed, with little effect on the configurations of the bridges that join them. The droplets then grow by accreting monomers from the bridges, thus causing the bridges to stretch. During these two stages the overall dimensions of the chain decrease only weakly. Further growth of the droplets is accomplished by the shortening of the bridges, which causes the shrinking of the overall dimensions of the chain. The characteristic times of the three stages respectively scale as the zeroth, 1/5 and 6/5 power of the the degree of polymerization of the chain.Comment: 11 pages, 3 figure

    Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population

    Get PDF
    The manner by which genotype and environment affect complex phenotypes is one of the fundamental questions in biology. In this study, we quantified the transcriptome--a subset of the metabolome--and, using targeted proteomics, quantified a subset of the liver proteome from 40 strains of the BXD mouse genetic reference population on two diverse diets. We discovered dozens of transcript, protein, and metabolite QTLs, several of which linked to metabolic phenotypes. Most prominently, Dhtkd1 was identified as a primary regulator of 2-aminoadipate, explaining variance in fasted glucose and diabetes status in both mice and humans. These integrated molecular profiles also allowed further characterization of complex pathways, particularly the mitochondrial unfolded protein response (UPR(mt)). UPR(mt) shows strikingly variant responses at the transcript and protein level that are remarkably conserved among C. elegans, mice, and humans. Overall, these examples demonstrate the value of an integrated multilayered omics approach to characterize complex metabolic phenotypes

    Coherent electron-phonon coupling and polaron-like transport in molecular wires

    Full text link
    We present a technique to calculate the transport properties through one-dimensional models of molecular wires. The calculations include inelastic electron scattering due to electron-lattice interaction. The coupling between the electron and the lattice is crucial to determine the transport properties in one-dimensional systems subject to Peierls transition since it drives the transition itself. The electron-phonon coupling is treated as a quantum coherent process, in the sense that no random dephasing due to electron-phonon interactions is introduced in the scattering wave functions. We show that charge carrier injection, even in the tunneling regime, induces lattice distortions localized around the tunneling electron. The transport in the molecular wire is due to polaron-like propagation. We show typical examples of the lattice distortions induced by charge injection into the wire. In the tunneling regime, the electron transmission is strongly enhanced in comparison with the case of elastic scattering through the undistorted molecular wire. We also show that although lattice fluctuations modify the electron transmission through the wire, the modifications are qualitatively different from those obtained by the quantum electron-phonon inelastic scattering technique. Our results should hold in principle for other one-dimensional atomic-scale wires subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to appear march 2001

    Coherent information analysis of quantum channels in simple quantum systems

    Full text link
    The coherent information concept is used to analyze a variety of simple quantum systems. Coherent information was calculated for the information decay in a two-level atom in the presence of an external resonant field, for the information exchange between two coupled two-level atoms, and for the information transfer from a two-level atom to another atom and to a photon field. The coherent information is shown to be equal to zero for all full-measurement procedures, but it completely retains its original value for quantum duplication. Transmission of information from one open subsystem to another one in the entire closed system is analyzed to learn quantum information about the forbidden atomic transition via a dipole active transition of the same atom. It is argued that coherent information can be used effectively to quantify the information channels in physical systems where quantum coherence plays an important role.Comment: 24 pages, 7 figs; Final versiob after minor changes, title changed; to be published in Phys. Rev. A, September 200

    Strange quark condensate from QCD sum rules to five loops

    Full text link
    It is argued that it is valid to use QCD sum rules to determine the scalar and pseudoscalar two-point functions at zero momentum, which in turn determine the ratio of the strange to non-strange quark condensates Rsu=R_{su} = \frac{}{} with (q=u,dq=u,d). This is done in the framework of a new set of QCD Finite Energy Sum Rules (FESR) that involve as integration kernel a second degree polynomial, tuned to reduce considerably the systematic uncertainties in the hadronic spectral functions. As a result, the parameters limiting the precision of this determination are ΛQCD\Lambda_{QCD}, and to a major extent the strange quark mass. From the positivity of RsuR_{su} there follows an upper bound on the latter: msˉ(2GeV)121(105)MeV\bar{m_{s}} (2 {GeV}) \leq 121 (105) {MeV}, for ΛQCD=330(420)MeV.\Lambda_{QCD} = 330 (420) {MeV} .Comment: Minor changes to Sections 2 and
    corecore