83 research outputs found

    Common genetic risk of major depression and nicotine dependence: The contribution of antisocial traits in a United States veteran male twin cohort

    Get PDF
    Many studies that found associations between depression and nicotine dependence have ignored possible shared genetic influences associated with antisocial traits. The present study examined the contribution of genetic and environmental effects associated with conduct disorder (CD) and antisocial personality disorder (ASPD) to the comorbidity of major depression (MD) and nicotine dependence (ND). A telephone diagnostic interview, the Diagnostic Interview Schedule-III-R, was administered to eligible twins from the Vietnam Era Twin (VET) Registry in 1992. Multivariate genetic models were fitted to 3360 middle-aged and predominantly white twin pairs (1868 monozygotic, 1492 dizygotic pairs) of which both members completed the pertinent diagnostic interview sections. Genetic influences on CD accounted for 100%, 68%, and 50% of the total genetic variance in risk for ASPD, MD and ND, respectively. After controlling for genetic influences on CD, the partial genetic correlation between MD and ND was no longer statistically significant. Nonshared environmental contributions to the comorbidity among these disorders were not significant. This study not only demonstrates that the comorbidity between ND and MD is influenced by common genetic risk factors, but also further suggests that the common genetic risk factors overlapped with those for antisocial traits such as CD and ASPD in men

    Diabetes by Air, Land, and Sea: Effect of Deployments on HbA1c and BMI

    Get PDF
    INTRODUCTION: Service members (SMs) in the United States (U.S.) Armed Forces have diabetes mellitus at a rate of 2-3%. Despite having a chronic medical condition, they have deployed to environments with limited medical support. Given the scarcity of data describing how they fare in these settings, we conducted a retrospective study analyzing the changes in glycated hemoglobin (HbA1c) and body mass index (BMI) before and after deployment. MATERIALS AND METHODS: SMs from the U.S. Army, Air Force, Navy, and Marine Corps with diabetes who deployed overseas were identified through the Military Health System (MHS) Management Analysis and Reporting Tool and the Defense Manpower Data Center. Laboratory and pharmaceutical data were obtained from the MHS Composite Health Care System and the Pharmacy Data Transaction Service, respectively. Paired t-tests were conducted to calculate changes in HbA1c and BMI before and after deployment. RESULTS: SMs with diabetes completed 11,325 deployments of greater than 90 days from 2005 to 2017. Of these, 474 (4.2%) SMs had both HbA1c and BMI measurements within 90 days prior to departure and within 90 days of return. Most (84.2%) required diabetes medications: metformin in 67.3%, sulfonylureas in 19.0%, dipeptidyl peptidase-4 inhibitors in 13.9%, and insulin in 5.5%. Most SMs deployed with an HbA1c \u3c 7.0% (67.1%), with a mean predeployment HbA1c of 6.8%. Twenty percent deployed with an HbA1c between 7.0 and 7.9%, 7.2% deployed with an HbA1c between 8.0 and 8.9%, and 5.7% deployed with an HbA1c of 9.0% or higher. In the overall population and within each military service, there was no significant change in HbA1c before and after deployment. However, those with predeployment HbA1c \u3c 7.0% experienced a rise in HbA1c from 6.2 to 6.5% (P \u3c 0.001), whereas those with predeployment HbA1c values ≥7.0% experienced a decline from 8.0 to 7.5% (P \u3c 0.001). Those who deployed between 91 and 135 days had a decline in HbA1c from 7.1 to 6.7% (P = 0.010), but no significant changes were demonstrated in those with longer deployment durations. BMI declined from 29.6 to 29.3 kg/m2 (P \u3c 0.001), with other significant changes seen among those in the Army, Navy, and deployment durations up to 315 days. CONCLUSIONS: Most SMs had an HbA1c \u3c 7.0%, suggesting that military providers appropriately selected well-managed SMs for deployment. HbA1c did not seem to deteriorate during deployment, but they also did not improve despite a reduction in BMI. Concerning trends included the deployment of some SMs with much higher HbA1c, utilization of medications with adverse safety profiles, and the lack of HbA1c and BMI evaluation proximal to deployment departures and returns. However, for SMs meeting adequate glycemic targets, we demonstrated that HbA1c remained stable, supporting the notion that some SMs may safely deploy with diabetes. Improvement in BMI may compensate for factors promoting hyperglycemia in a deployed setting, such as changes in diet and medication availability. Future research should analyze in a prospective fashion, where a more complete array of diabetes and readiness-related measures to comprehensively evaluate the safety of deploying SMs with diabetes
    corecore