157 research outputs found
Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis
1. Seasonal effects on daily activity patterns in the common vole were established by periodic trapping in the field and continuous year round recording of running wheel and freeding activity in cages exposed to natural meteorological conditions.
2. Trapping revealed decreased nocturnality in winter as compared to summer. This was paralelled by a winter reduction in both nocturnal wheel running and feeding time in cages.
3. Frequent trap checks revealed a 2 h rhythm in daytime catches in winter, not in summer. Cage feeding activity in daytime was always organized in c. 2 h intervals, but day-to-day variations in phase blurred the rhythm in summer in a summation of individual daily records. Thus both seasonal and short-term temporal patterns are consistent between field trappings and cage feeding records.
4. Variables associated with the seasonal change in daily pattern were: reproductive state (sexually active voles more nocturnal), age (juveniles more nocturnal), temperature (cold days: less nocturnal), food (indicated by feeding experiments), habitat structure (more nocturnal in habitat with underground tunnels).
5. Minor discrepancies between field trappings and cage feeding activity can be explained by assuming increased trappability of voles in winter. Cage wheel running is not predictive of field trapping patterns and is thought to reflect behavioral motivations not associated with feeding but with other activities (e.g., exploratory, escape, interactive behaviour) undetected by current methods, including radiotelemetry and passage-counting.
6. Winter decrease in nocturnality appears to involve a reduction in nocturnal non-feeding and feeding behaviour and is interpreted primarily as an adaptation to reduce energy expenditure in adverse but socially stable winter conditions.
Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens
The average nitrogen-to-phosphorus ratio (N?P) of insect herbivores is less than that of leaves, suggesting that P may mediate plant-insect interactions more often than appreciated. We investigated whether succession-related heterogeneity in N and P stoichiometry influences herbivore performance on N-fixing lupin (Lupinus lepidus) colonizing primary successional volcanic surfaces, where the abundances of several specialist lepidopteran herbivores are inversely related to lupin density and are known to alter lupin colonization dynamics. We examined larval performance in response to leaf nutritional characteristics using gelechiid and pyralid leaf-tiers, and a noctuid leaf-cutter.Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens. PLoS ONE 4(11): e7807. doi:10.1371/journal.pone.000780
Energy or information? The role of seed availability for reproductive decisions in edible dormice
The edible dormouse is a specialized seed predator which is highly adapted to the fluctuations of food availability caused by mast seeding of beech and oak trees. Dormice produce young just in time with maximum food availability, and can completely skip reproduction in years with a lack of seeding. Because their decision to reproduce or not in any particular year is made long before the ripe seeds are available, it seems that dormice can anticipate the upcoming mast situation. We tested the hypothesis that the presence of high caloric food in spring affects their reproductive decision. Therefore, we supplementary fed dormice in a field experiment from spring to early summer with sunflower seeds, which also contain a high amount of energy. Supplemental feeding caused significant increases in the proportion of reproducing females and reproductively active males. These results suggest that edible dormice may use the occurrence of an energy rich food resource to predict the autumnal mast situation. Further, our data indicate that the decision to reproduce was not the result of an increased body mass due to the consumption of surplus food, but that sufficient seed abundance acts as an environmental signal to which dormice adjust their reproduction
Food Quality Affects Secondary Consumers Even at Low Quantities: An Experimental Test with Larval European Lobster
The issues of food quality and food quantity are crucial for trophic interactions. Although most research has focussed on the primary producer – herbivore link, recent studies have shown that quality effects at the bottom of the food web propagate to higher trophic levels. Negative effects of poor food quality have almost exclusively been demonstrated at higher food quantities. Whether these negative effects have the same impact at low food availability in situations where the majority if not all of the resources are channelled into routine metabolism, is under debate. In this study a tri-trophic food chain was designed, consisting of the algae Rhodomonas salina, the copepod Acartia tonsa and freshly hatched larvae of the European lobster Homarus gammarus. The lobster larvae were presented with food of two different qualities (C∶P ratios) and four different quantities to investigate the combined effects of food quality and quantity. Our results show that the quality of food has an impact on the condition of lobster larvae even at very low food quantities. Food with a lower C∶P content resulted in higher condition of the lobster larvae regardless of the quantity of food. These interacting effects of food quality and food quantity can have far reaching consequences for ecosystem productivity
The Effect of Plant Inbreeding and Stoichiometry on Interactions with Herbivores in Nature: Echinacea angustifolia and Its Specialist Aphid
Fragmentation of once widespread communities may alter interspecific interactions by changing genetic composition of interacting populations as well as their abundances and spatial distributions. In a long-term study of a fragmented population of Echinacea angustifolia, a perennial plant native to the North American prairie, we investigated influences on its interaction with a specialist aphid and tending ants. We grew plant progeny of sib-matings (I), and of random pairings within (W) and between (B) seven remnants in a common field within 8 km of the source remnants. During the fifth growing season, we determined each plant's burden of aphids and ants, as well as its size and foliar elemental composition (C, N, P). We also assayed composition (C, N) of aphids and ants. Early in the season, progeny from genotypic classes B and I were twice as likely to harbor aphids, and in greater abundance, than genotypic class W; aphid loads were inversely related to foliar concentration of P and positively related to leaf N and plant size. At the end of the season, aphid loads were indistinguishable among genotypic classes. Ant abundance tracked aphid abundance throughout the season but showed no direct relationship with plant traits. Through its potential to alter the genotypic composition of remnant populations of Echinacea, fragmentation can increase Echinacea's susceptibility to herbivory by its specialist aphid and, in turn, perturb the abundance and distribution of aphids
Protein Hydrolysates Are Avoided by Herbivores but Not by Omnivores in Two-Choice Preference Tests
Background: The negative sensory properties of casein hydrolysates (HC) often limit their usage in products intended for human consumption, despite HC being nutritious and having many functional benefits. Recent, but taxonomically limited, evidence suggests that other animals also avoid consuming HC when alternatives exist. Methodology/Principal Findings: We evaluated ingestive responses of five herbivorous species (guinea pig, mountain beaver, gopher, vole, and rabbit) and five omnivorous species (rat, coyote, house mouse, white-footed mouse, and deer mouse; N = 16–18/species) using solid foods containing 20% HC in a series of two-choice preference tests that used a nonprotein, cellulose-based alternative. Individuals were also tested with collagen hydrolysate (gelatin; GE) to determine whether it would induce similar ingestive responses to those induced by HC. Despite HC and GE having very different nutritional and sensory qualities, both hydrolysates produced similar preference score patterns. We found that the herbivores generally avoided the hydrolysates while the omnivores consumed them at similar levels to the cellulose diet or, more rarely, preferred them (HC by the white-footed mouse; GE by the rat). Follow-up preference tests pairing HC and the nutritionally equivalent intact casein (C) were performed on the three mouse species and the guinea pigs. For the mice, mean HC preference scores were lower in the HC v C compared to the HC v Cel tests, indicating that HC’s sensory qualities negatively affected its consumption. However, responses were species-specific. For the guinea pigs, repeated exposure to HC or C (4.7-h sessions; N = 10) were found to increase subsequent HC preference scores in an HC v C preference test, which was interpreted in the light of conservative foraging strategies thought to typify herbivores. Conclusions/Significance: This is the first empirical study of dietary niche-related taxonomic differences in ingestive responses to protein hydrolysates using multiple species under comparable conditions. Our results provide a basis for future work in sensory, physiological, and behavioral mechanisms of hydrolysate avoidance and on the potential use of hydrolysates for pest management
Stressful conditions reveal decrease in size, modification of shape but relatively stable asymmetry in bumblebee wings
Human activities can generate a wide variety of direct and indirect effects on animals, which can manifest as environmental and genetic stressors. Several phenotypic markers have been proposed as indicators of these stressful conditions but have displayed contrasting results, depending, among others, on the phenotypic trait measured. Knowing the worldwide decline of multiple bumblebee species, it is important to understand these stressors and link them with the drivers of decline. We assessed the impact of several stressors (i.e. natural toxin-, parasite-, thermic- and inbreeding-stress) on both wing shape and size and their variability as well as their directional and fluctuating asymmetries. The total data set includes 650 individuals of Bombus terrestris (Hymenoptera: Apidae). Overall wing size and shape were affected by all the tested stressors. Except for the sinigrin (e.g. glucosinolate) stress, each stress implies a decrease of wing size. Size variance was affected by several stressors, contrary to shape variance that was affected by none of them. Although wing size directional and fluctuating asymmetries were significantly affected by sinigrin, parasites and high temperatures, neither directional nor fluctuating shape asymmetry was significantly affected by any tested stressor. Parasites and high temperatures led to the strongest phenotype modifications. Overall size and shape were the most sensitive morphological traits, which contrasts with the common view that fluctuating asymmetry is the major phenotypic marker of stress
Genetic Structure in the Seabuckthorn Carpenter Moth (Holcocerus hippophaecolus) in China: The Role of Outbreak Events, Geographical and Host Factors
Understanding factors responsible for structuring genetic diversity is of fundamental importance in evolutionary biology. The seabuckthorn carpenter moth (Holcocerus hippophaecolus Hua) is a native species throughout the north of China and is considered the main threat to seabuckthorn, Hippophae rhamnoides L. We assessed the influence of outbreaks, environmental factors and host species in shaping the genetic variation and structure of H. hippophaecolus by using Amplified Fragment Length Polymorphism (AFLP) markers. We rejected the hypothesis that outbreak-associated genetic divergence exist, as evidenced by genetic clusters containing a combination of populations from historical outbreak areas, as well as non-outbreak areas. Although a small number of markers (4 of 933 loci) were identified as candidates under selection in response to population densities. H. hippophaecolus also did not follow an isolation-by-distance pattern. We rejected the hypothesis that outbreak and drought events were driving the genetic structure of H. hippophaecolus. Rather, the genetic structure appears to be influenced by various confounding bio-geographical factors. There were detectable genetic differences between H. hippophaecolus occupying different host trees from within the same geographic location. Host-associated genetic divergence should be confirmed by further investigation
Between-Population Outbreeding Affects Plant Defence
Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies
- …