9,034 research outputs found

    Radial viscous fingering of hot asthenosphere within the Icelandic plume beneath the North Atlantic Ocean

    Get PDF
    © 2017 The Icelandic mantle plume has had a significant influence on the geologic and oceanographic evolution of the North Atlantic Ocean during Cenozoic times. Full-waveform tomographic imaging of this region shows that the planform of this plume has a complex irregular shape with significant shear wave velocity anomalies lying beneath the lithospheric plates at a depth of 100–200 km. The distribution of these anomalies suggests that about five horizontal fingers extend radially beneath the fringing continental margins. The best-imaged fingers lie beneath the British Isles and beneath western Norway where significant departures from crustal isostatic equilibrium have been measured. Here, we propose that these radial fingers are generated by a phenomenon known as the Saffman–Taylor instability. Experimental and theoretical analyses show that fingering occurs when a less viscous fluid is injected into a more viscous fluid. In radial, miscible fingering, the wavelength and number of fingers are controlled by the mobility ratio (i.e. the ratio of viscosities), by the Péclet number (i.e. the ratio of advective and diffusive transport rates), and by the thickness of the horizontal layer into which fluid is injected. We combine shear wave velocity estimates with residual depth measurements around the Atlantic margins to estimate the planform distribution of temperature and viscosity within a horizontal asthenospheric layer beneath the lithospheric plate. Our estimates suggest that the mobility ratio is at least 20–50, that the Péclet number is O(104), and that the asthenospheric channel is 100±20 km thick. The existence and planform of fingering is consistent with experimental observations and with theoretical arguments. A useful rule of thumb is that the wavelength of fingering is 5±1 times the thickness of the horizontal layer. Our proposal has been further tested by examining plumes of different vigor and planform (e.g. Hawaii, Cape Verde, Yellowstone). Our results support the notion that dynamic topography of the Earth's surface can be influenced by fast, irregular horizontal flow within thin, but rapidly evolving, asthenospheric fingers

    Probing Density Fluctuations using the FIRST Radio Survey

    Full text link
    We use results of angular clustering measurements in 3000 sq. deg's of the FIRST radio survey to infer information on spatial clustering. Measurements are compared with CDM-model predictions. Clustering of FIRST sources with optical ID's in the APM catalog are also investigated. Finally, we outline a preliminary search for a weak lensing signal in the survey.Comment: 6 pages latex, 2 figures, to appear in Cosmology with the New Radio Surveys (Kluwer

    Efficient coupling into slow light photonic crystal waveguide without transition region: Role of evanescent modes

    Full text link
    We show that efficient coupling between fast and slow photonic crystal waveguide modes is possible, provided that there exist strong evanescent modes to match the waveguide fields across the interface. Evanescent modes are required when the propagating modes have substantially different modal fields, which occurs, for example, when coupling an index-guided mode and a gap-guided mode. ©2009 Optical Society of America

    Efficient slow-light coupling in a photonic crystal waveguide without transition region

    Full text link
    We consider the coupling into a slow mode that appears near an inflection point in the band structure of a photonic crystal waveguide. Remarkably, the coupling into this slow mode, which has a group index ng > 1000, can be essentially perfect without any transition region. We show that this efficient coupling occurs thanks to an evanescent mode in the slow medium, which has appreciable amplitude and helps satisfy the boundary conditions but does not transport any energy. © 2008 Optical Society of America

    Symmetry and degeneracy in microstructured optical fibers

    Full text link
    The symmetry of an optical waveguide determines its modal degeneracies. A fiber with rotational symmetry of order higher than 2 has modes that either are nondegenerate and support the complete fiber symmetry or are twofold degenerate pairs of lower symmetry. The latter case applies to the fundamental modes of perfect microstructured optical fibers, guaranteeing that such fibers are not birefringent. We explore two numerical methods and demonstrate their agreement with these symmetry constraints. © 2001 Optical Society of America

    Confinement losses in microstructured optical fibers

    Full text link
    We describe a multipole formulation that can be used for high-accuracy calculations of the full complex propagation constant of a microstructured optical fiber with a finite number of holes. We show how the imaginary part of the microstructure, which describes confinement losses not associated with absorption, varies with hole size, the number of rings of holes, and wavelength, and give the minimum number of rings of holes required for a specific loss for given parameters. © 2001 Optical Society of America
    • …
    corecore