1,098 research outputs found

    C4 Dissymmetric resorcinarene derivatives: synthesis, crystal structure and micelle formation

    Get PDF
    The synthesis of a C4 dissymmetric resorcinarene tetracarboxylic acid derivative and determination of its critical micelle concentration is reported. The tetrahydroxy derivative was prepared by reduction of the tetra-acid. The low-temperature single crystal X-ray structure of the methyl ester derivative of the tetra-acid is also reported. This crystallised with two independent molecules of similar boat (flattened cone) conformation within the asymmetric unit

    Spatial Curvature Falsifies Eternal Inflation

    Full text link
    Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10^-5). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature \Omega_k. On this basis we argue that a measurement of |\Omega_k| > 10^-4 would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of \Omega_k < -10^-4 (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of \Omega_k measurements and constitute a sharp test of these predictions.Comment: 16+2 pages, 2 figure

    Optical absorption of spin ladders

    Full text link
    We present a theory of phonon-assisted optical two-magnon absorption in two-leg spin-ladders. Based on the strong intra-rung-coupling limit we show that collective excitations of total spin S=0, 1 and 2 exist outside of the two-magnon continuum. It is demonstrated that the singlet collective state has a clear signature in the optical spectrum.Comment: 4 pages, 3 figure

    Suppression of static stripe formation by next-neighbor hopping

    Full text link
    We show from real-space Hartree-Fock calculations within the extended Hubbard model that next-nearest neighbor (t') hopping processes act to suppress the formation of static charge stripes. This result is confirmed by investigating the evolution of charge-inhomogeneous corral and stripe phases with increasing t' of both signs. We propose that large t' values in YBCO prevent static stripe formation, while anomalously small t' in LSCO provides an additional reason for the appearance of static stripes only in these systems.Comment: 4 pages, 5 figure

    Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet

    Full text link
    We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic insulator, and coupled to it via a weak antiferromagnetic spin exchange interaction. We argue that this model may qualitatively capture the physics of a single charge stripe in the cuprates on length- and time scales shorter than those set by its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that describes the electronic spin sector of the stripe as that of a sine-Gordon model. We determine its phases via a perturbative renormalization group analysis. For realistic values of the model parameters we obtain a phase characterized by enhanced spin density and composite charge density wave correlations, coexisting with subleading triplet and composite singlet pairing correlations. This result is shown to be independent of the spatial orientation of the stripe on the square lattice. Slow transverse fluctuations of the stripes tend to suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correlation, breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure

    Metal-insulator transition in the one-dimensional Holstein model at half filling

    Full text link
    We study the one-dimensional Holstein model with spin-1/2 electrons at half-filling. Ground state properties are calculated for long chains with great accuracy using the density matrix renormalization group method and extrapolated to the thermodynamic limit. We show that for small electron-phonon coupling or large phonon frequency, the insulating Peierls ground state predicted by mean-field theory is destroyed by quantum lattice fluctuations and that the system remains in a metallic phase with a non-degenerate ground state and power-law electronic and phononic correlations. When the electron-phonon coupling becomes large or the phonon frequency small, the system undergoes a transition to an insulating Peierls phase with a two-fold degenerate ground state, long-range charge-density-wave order, a dimerized lattice structure, and a gap in the electronic excitation spectrum.Comment: 6 pages (LaTex), 10 eps figure

    Next-to-leading BFKL phenomenology of forward-jet cross sections at HERA

    Full text link
    We show that the forward-jet measurements performed at HERA allow for a detailed study of corrections due to next-to-leading logarithms (NLL) in the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach. While the description of the d\sigma/dx data shows small sensitivity to NLL-BFKL corrections, these can be tested by the triple differential cross section d\sigma/dxdk_T^2dQ^2 recently measured. These data can be successfully described using a renormalization-group improved NLL kernel while the standard next-to-leading-order QCD or leading-logarithm BFKL approaches fail to describe the same data in the whole kinematic range. We present a detailed analysis of the NLL scheme and renormalization-scale dependences and also discuss the photon impact factors.Comment: 15 pages, 9 figures, new title, NLL-BFKL saddle-point approximation replaced by exact integratio

    Six-minute walk distance after coronary artery bypass grafting compared with medical therapy in ischaemic cardiomyopathy

    Get PDF
    Background: In patients with ischaemic left ventricular dysfunction, coronary artery bypass surgery (CABG) may decrease mortality, but it is not known whether CABG improves functional capacity. Objective: To determine whether CABG compared with medical therapy alone (MED) increases 6 min walk distance in patients with ischaemic left ventricular dysfunction and coronary artery disease amenable to revascularisation. Methods: The Surgical Treatment in Ischemic Heart disease trial randomised 1212 patients with ischaemic left ventricular dysfunction to CABG or MED. A 6 min walk distance test was performed both at baseline and at least one follow-up assessment at 4, 12, 24 and/or 36 months in 409 patients randomised to CABG and 466 to MED. Change in 6 min walk distance between baseline and follow-up were compared by treatment allocation. Results: 6 min walk distance at baseline for CABG was mean 340±117 m and for MED 339±118 m. Change in walk distance from baseline was similar for CABG and MED groups at 4 months (mean +38 vs +28 m), 12 months (+47 vs +36 m), 24 months (+31 vs +34 m) and 36 months (−7 vs +7 m), P&gt;0.10 for all. Change in walk distance between CABG and MED groups over all assessments was also similar after adjusting for covariates and imputation for missing values (+8 m, 95% CI −7 to 23 m, P=0.29). Results were consistent for subgroups defined by angina, New York Heart Association class ≥3, left ventricular ejection fraction, baseline walk distance and geographic region. Conclusion: In patients with ischaemic left ventricular dysfunction CABG compared with MED alone is known to reduce mortality but is unlikely to result in a clinically significant improvement in functional capacity

    Electronic and Magnetic Properties of Nanographite Ribbons

    Full text link
    Electronic and magnetic properties of ribbon-shaped nanographite systems with zigzag and armchair edges in a magnetic field are investigated by using a tight binding model. One of the most remarkable features of these systems is the appearance of edge states, strongly localized near zigzag edges. The edge state in magnetic field, generating a rational fraction of the magnetic flux (\phi= p/q) in each hexagonal plaquette of the graphite plane, behaves like a zero-field edge state with q internal degrees of freedom. The orbital diamagnetic susceptibility strongly depends on the edge shapes. The reason is found in the analysis of the ring currents, which are very sensitive to the lattice topology near the edge. Moreover, the orbital diamagnetic susceptibility is scaled as a function of the temperature, Fermi energy and ribbon width. Because the edge states lead to a sharp peak in the density of states at the Fermi level, the graphite ribbons with zigzag edges show Curie-like temperature dependence of the Pauli paramagnetic susceptibility. Hence, it is shown that the crossover from high-temperature diamagnetic to low-temperature paramagnetic behavior of the magnetic susceptibility of nanographite ribbons with zigzag edges.Comment: 13 pages including 19 figures, submitted to Physical Rev
    • …
    corecore