63 research outputs found
Factors associated with infant mortality in Nepal: a comparative analysis of Nepal demographic and health surveys (NDHS) 2006 and 2011
Background: Infant mortality is one of the priority public health issues in developing countries like Nepal. The infant mortality rate (IMR) was 48 and 46 per 1000 live births for the year 2006 and 2011, respectively, a slight reduction during the 5 years’ period. A comprehensive analysis that has identified and compared key factors associated with infant mortality is limited in Nepal, and, therefore, this study aims to fill the gap. Methods: Datasets from Nepal Demographic and Health Surveys (NDHS) 2006 and 2011 were used to identify and compare the major factors associated with infant mortality. Both surveys used multistage stratified cluster sampling techniques. A total of 8707 and 10,826 households were interviewed in 2006 and 2011, with more than 99% response rate in both studies. The survival information of singleton live-born infants born 5 years preceding the two surveys were extracted from the ‘childbirth’ dataset. Multiple logistic regression analysis using a hierarchical modelling approach with the backward elimination method was conducted. Complex Samples Analysis was used to adjust for unequal selection probability due to the multistage stratified cluster-sampling procedure used in both NDHS.Results: Based on NDHS 2006, ecological region, succeeding birth interval, breastfeeding status and type of delivery assistance were found to be significant predictors of infant mortality. Infants born in hilly region (AOR = 0.43, p = 0.013) and with professional assistance (AOR = 0.27, p = 0.039) had a lower risk of mortality. On the other hand, infants with succeeding birth interval less than 24 months (AOR = 6.66, p = 0.001) and those who were never breastfed (AOR = 1.62, p = 0.044) had a higher risk of mortality. Based on NDHS 2011, birth interval (preceding and succeeding) and baby’s size at birth were identified to be significantly associated with infant mortality. Infants born with preceding birth interval (AOR = 1.94, p = 0.022) or succeeding birth interval (AOR = 3.22, p = 0.002) shorter than 24 months had higher odds of mortality while those born with a very large or larger than average size had significantly lowered odds (AOR = 0.17, p = 0.008) of mortality. Conclusion: IMR and associated risk factors differ between NDHS 2006 and 2011 except ‘succeeding birth interval’ which attained significant status in the both study periods. This study identified the ecological region, birth interval, delivery assistant type, baby’s birth size and breastfeeding status as significant predictors of infant mortality
Assessment of the In Vivo Toxicity of Gold Nanoparticles
The environmental impact of nanoparticles is evident; however, their toxicity due to their nanosize is rarely discussed. Gold nanoparticles (GNPs) may serve as a promising model to address the size-dependent biological response to nanoparticles because they show good biocompatibility and their size can be controlled with great precision during their chemical synthesis. Naked GNPs ranging from 3 to 100 nm were injected intraperitoneally into BALB/C mice at a dose of 8 mg/kg/week. GNPs of 3, 5, 50, and 100 nm did not show harmful effects; however, GNPs ranging from 8 to 37 nm induced severe sickness in mice. Mice injected with GNPs in this range showed fatigue, loss of appetite, change of fur color, and weight loss. Starting from day 14, mice in this group exhibited a camel-like back and crooked spine. The majority of mice in these groups died within 21 days. Injection of 5 and 3 nm GNPs, however, did not induce sickness or lethality in mice. Pathological examination of the major organs of the mice in the diseased groups indicated an increase of Kupffer cells in the liver, loss of structural integrity in the lungs, and diffusion of white pulp in the spleen. The pathological abnormality was associated with the presence of gold particles at the diseased sites, which were verified by ex vivo Coherent anti-Stoke Raman scattering microscopy. Modifying the surface of the GNPs by incorporating immunogenic peptides ameliorated their toxicity. This reduction in the toxicity is associated with an increase in the ability to induce antibody response. The toxicity of GNPs may be a fundamental determinant of the environmental toxicity of nanoparticles
A Novel Adeno-Associated Viral Variant for Efficient and Selective Intravitreal Transduction of Rat Müller Cells
BACKGROUND:The pathologies of numerous retinal degenerative diseases can be attributed to a multitude of genetic factors, and individualized treatment options for afflicted patients are limited and cost-inefficient. In light of the shared neurodegenerative phenotype among these disorders, a safe and broad-based neuroprotective approach would be desirable to overcome these obstacles. As a result, gene delivery of secretable-neuroprotective factors to Müller cells, a type of retinal glia that contacts all classes of retinal neurons, represents an ideal approach to mediate protection of the entire retina through a simple and innocuous intraocular, or intravitreal, injection of an efficient vehicle such as an adeno-associated viral vector (AAV). Although several naturally occurring AAV variants have been isolated with a variety of tropisms, or cellular specificities, these vectors inefficiently infect Müller cells via intravitreal injection. METHODOLOGY/PRINCIPAL FINDINGS:We have previously applied directed evolution to create several novel AAV variants capable of efficient infection of both rat and human astrocytes through iterative selection of a panel of highly diverse AAV libraries. Here, in vivo and in vitro characterization of these isolated variants identifies a previously unreported AAV variant ShH10, closely related to AAV serotype 6 (AAV6), capable of efficient, selective Müller cell infection through intravitreal injection. Importantly, this new variant shows significantly improved transduction relative to AAV2 (>60%) and AAV6. CONCLUSIONS/SIGNIFICANCE:Our findings demonstrate that AAV is a highly versatile vector capable of powerful shifts in tropism from minor sequence changes. This isolated variant represents a new therapeutic vector to treat retinal degenerative diseases through secretion of neuroprotective factors from Müller cells as well as provides new opportunities to study their biological functions in the retina
Protection of Visual Functions by Human Neural Progenitors in a Rat Model of Retinal Disease
BACKGROUND: A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. METHODOLOGY/PRINCIPAL FINDINGS: Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. CONCLUSIONS/SIGNIFICANCE: Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo
Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?
Gold nanoparticles have attracted enormous scientific and technological interest due to their ease of synthesis, chemical stability, and unique optical properties. Proof-of-concept studies demonstrate their biomedical applications in chemical sensing, biological imaging, drug delivery, and cancer treatment. Knowledge about their potential toxicity and health impact is essential before these nanomaterials can be used in real clinical settings. Furthermore, the underlying interactions of these nanomaterials with physiological fluids is a key feature of understanding their biological impact, and these interactions can perhaps be exploited to mitigate unwanted toxic effects. In this Perspective we discuss recent results that address the toxicity of gold nanoparticles both in vitro and in vivo, and we provide some experimental recommendations for future research at the interface of nanotechnology and biological systems
Ulnar-sided wrist pain. II. Clinical imaging and treatment
Pain at the ulnar aspect of the wrist is a diagnostic challenge for hand surgeons and radiologists due to the small and complex anatomical structures involved. In this article, imaging modalities including radiography, arthrography, ultrasound (US), computed tomography (CT), CT arthrography, magnetic resonance (MR) imaging, and MR arthrography are compared with regard to differential diagnosis. Clinical imaging findings are reviewed for a more comprehensive understanding of this disorder. Treatments for the common diseases that cause the ulnar-sided wrist pain including extensor carpi ulnaris (ECU) tendonitis, flexor carpi ulnaris (FCU) tendonitis, pisotriquetral arthritis, triangular fibrocartilage complex (TFCC) lesions, ulnar impaction, lunotriquetral (LT) instability, and distal radioulnar joint (DRUJ) instability are reviewed
- …