12 research outputs found

    Modelling ranging behaviour of female orang-utans: a case study in Tuanan, Central Kalimantan, Indonesia

    Full text link
    Quantification of the spatial needs of individuals and populations is vitally important for management and conservation. Geographic information systems (GIS) have recently become important analytical tools in wildlife biology, improving our ability to understand animal movement patterns, especially when very large data sets are collected. This study aims at combining the field of GIS with primatology to model and analyse space-use patterns of wild orang-utans. Home ranges of female orang-utans in the Tuanan Mawas forest reserve in Central Kalimantan, Indonesia were modelled with kernel density estimation methods. Kernel results were compared with minimum convex polygon estimates, and were found to perform better, because they were less sensitive to sample size and produced more reliable estimates. Furthermore, daily travel paths were calculated from 970 complete follow days. Annual ranges for the resident females were approximately 200 ha and remained stable over several years; total home range size was estimated to be 275 ha. On average, each female shared a third of her home range with each neighbouring female. Orang-utan females in Tuanan built their night nest on average 414 m away from the morning nest, whereas average daily travel path length was 777 m. A significant effect of fruit availability on day path length was found. Sexually active females covered longer distances per day and may also temporarily expand their ranges

    Electrospinning of alumina nanofibers using different precursors

    Get PDF
    Electrospinning technique is becoming increasingly13; popular for the preparation of nanofibers [1x2013;5]. The13; process involves the application of a strong electrostatic13; field to a capillary connected with a reservoir13; containing a polymer solution or melt. Under the13; influence of the electrostatic field, a pendant droplet of13; the polymer solution at the capillary tip is deformed13; into a conical shape (Taylor cone). If the voltage surpasses13; a threshold value, electrostatic forces overcome13; the surface tension, and a fine charged jet is ejected.13; The jet moves towards a ground plate, which acts as a13; counter electrode. The solvent begins to evaporate13; immediately after the jet is formed. The result is the13; deposition of nanofibers on a substrate located above13; the counter electrode. Initially, this technique was used13; for the preparation of polymer nanofibers [6x2013;9]. In13; recent years; this technique has been used for the13; preparation of metal oxide/ceramic nanofibers such as13; silica, zirconia, titania, nickel oxide, barium titanate,13; lead zirconate titanate and other oxide materials [10x2013;13; 30]. The nanofibers formed could be aligned (parallel13; and cross patterns) when an insulated cylinder attached13; to the axel of a DC motor is used as the substrate [31].13; Xia et al. [32] prepared polymeric and ceramic nanofibers13; as axially aligned arrays by the use of a collector13; consisting of two pieces of electrically conductive13; substrate separated by a gap. Katta et al. used copper13; wires spaced evenly in the form of a circular drum as a13; collector of the electro spun nanofiber
    corecore