90 research outputs found
Effect of Sulindac Sulfide on Metallohydrolases in the Human Colon Cancer Cell Line HT-29
Matrix metalloproteinase 7 (MMP7), a metallohydrolase involved in the development of several cancers, is downregulated in the ApcMin/+ colon cancer mouse model following sulindac treatment. To determine whether this effect is relevant to the human condition, HT-29 human colon cancer cells were treated with sulindac and its metabolites, and compared to results obtained from in vivo mouse studies. The expression of MMP7 was monitored. The results demonstrated that sulindac sulfide effectively downregulated both MMP7 expression and activity. Furthermore, activity-based proteomics demonstrated that sulindac sulfide dramatically decreased the activity of leukotriene A4 hydrolase in HT-29 cells as reflected by a decrease in the level of its product, leukotriene B4. This study demonstrates that the effect of sulindac treatment in a mouse model of colon cancer may be relevant to the human counterpart and highlights the effect of sulindac treatment on metallohydrolases
An optimized protocol for microarray validation by quantitative PCR using amplified amino allyl labeled RNA
<p>Abstract</p> <p>Background</p> <p>Validation of microarrays data by quantitative real-time PCR (qPCR) is often limited by the low amount of available RNA. This raised the possibility to perform validation experiments on the amplified amino allyl labeled RNA (AA-aRNA) leftover from microarrays. To test this possibility, we used an ongoing study of our laboratory aiming at identifying new biomarkers of graft rejection by the transcriptomic analysis of blood cells from brain-dead organ donors.</p> <p>Results</p> <p>qPCR for ACTB performed on AA-aRNA from 15 donors provided Cq values 8 cycles higher than when original RNA was used (P < 0.001), suggesting a strong inhibition of qPCR performed on AA-aRNA. When expression levels of 5 other genes were measured in AA-aRNA generated from a universal reference RNA, qPCR sensitivity and efficiency were decreased. This prevented the quantification of one low-abundant gene, which was readily quantified in un-amplified and un-labeled RNA. To overcome this limitation, we modified the reverse transcription (RT) protocol that generates cDNA from AA-aRNA as follows: addition of a denaturation step and 2-min incubation at room temperature to improve random primers annealing, a transcription initiation step to improve RT, and a final treatment with RNase H to degrade remaining RNA. Tested on universal reference AA-aRNA, these modifications provided a gain of 3.4 Cq (average from 5 genes, P < 0.001) and an increase of qPCR efficiency (from -1.96 to -2.88; P = 0.02). They also allowed for the detection of a low-abundant gene that was previously undetectable. Tested on AA-aRNA from 15 brain-dead organ donors, RT optimization provided a gain of 2.7 cycles (average from 7 genes, P = 0.004). Finally, qPCR results significantly correlated with microarrays.</p> <p>Conclusion</p> <p>We present here an optimized RT protocol for validation of microarrays by qPCR from AA-aRNA. This is particularly valuable in experiments where limited amount of RNA is available.</p
Depletion of somatic mutations in splicing-associated sequences in cancer genomes
Abstract Background An important goal of cancer genomics is to identify systematically cancer-causing mutations. A common approach is to identify sites with high ratios of non-synonymous to synonymous mutations; however, if synonymous mutations are under purifying selection, this methodology leads to identification of false-positive mutations. Here, using synonymous somatic mutations (SSMs) identified in over 4000 tumours across 15 different cancer types, we sought to test this assumption by focusing on coding regions required for splicing. Results Exon flanks, which are enriched for sequences required for splicing fidelity, have ~ 17% lower SSM density compared to exonic cores, even after excluding canonical splice sites. While it is impossible to eliminate a mutation bias of unknown cause, multiple lines of evidence support a purifying selection model above a mutational bias explanation. The flank/core difference is not explained by skewed nucleotide content, replication timing, nucleosome occupancy or deficiency in mismatch repair. The depletion is not seen in tumour suppressors, consistent with their role in positive tumour selection, but is otherwise observed in cancer-associated and non-cancer genes, both essential and non-essential. Consistent with a role in splicing modulation, exonic splice enhancers have a lower SSM density before and after controlling for nucleotide composition; moreover, flanks at the 5’ end of the exons have significantly lower SSM density than at the 3’ end. Conclusions These results suggest that the observable mutational spectrum of cancer genomes is not simply a product of various mutational processes and positive selection, but might also be shaped by negative selection
Patterns of sick-leave and health outcomes in injured workers with back pain
Little is known about the sick-leave experiences of workers who make a workers’ compensation claim for back pain. Our objective is to describe the 1-year patterns of sick-leave and the health outcomes of a cohort of workers who make a workers’ compensation claim for back pain. We studied a cohort of 1,831 workers from five large US firms who made incident workers’ compensation claims for back pain between January 1, 1999 and June 30, 2002. Injured workers were interviewed 1 month (n = 1,321), 6 months (n = 810) and 1 year (n = 462) following the onset of their pain. We described the course of back pain using four patterns of sick-leave: (1) no sick-leave, (2) returned to worked and stayed, (3) multiple episodes of sick-leave and (4) not yet returned to work. We described the health outcomes as back and/or leg pain intensity, functional limitations and health-related quality of life. We analyzed data from participants who completed all follow-up interviews (n = 457) to compute the probabilities of transition between patterns of sick-leave. A significant proportion of workers experienced multiple episodes of sick-leave (30.2%; 95% CI 25.0–35.1) during the 1-year follow-up. The proportion of workers who did not report sick-leave declined from 42.4% (95% CI 39.0–46.1) at 1 month to 33.6% (28.0–38.7) at 1 year. One year after the injury, 2.9% (1.6–4.9) of workers had not yet returned to work. Workers who did not report sick-leave and those who returned and stayed at work reported better health outcomes than workers who experienced multiple episodes of sick-leave or workers who had not returned to work. Almost a third of workers with an incident episode of back pain experience recurrent spells of work absenteeism during the following year. Our data suggest that stable patterns of sick-leave are associated with better health
Differences across health care systems in outcome and cost-utility of surgical and conservative treatment of chronic low back pain: a study protocol
<p>Abstract</p> <p>Background</p> <p>There is little evidence on differences across health care systems in choice and outcome of the treatment of chronic low back pain (CLBP) with spinal surgery and conservative treatment as the main options. At least six randomised controlled trials comparing these two options have been performed; they show conflicting results without clear-cut evidence for superior effectiveness of any of the evaluated interventions and could not address whether treatment effect varied across patient subgroups. Cost-utility analyses display inconsistent results when comparing surgical and conservative treatment of CLBP. Due to its higher feasibility, we chose to conduct a prospective observational cohort study.</p> <p>Methods</p> <p>This study aims to examine if</p> <p>1. Differences across health care systems result in different treatment outcomes of surgical and conservative treatment of CLBP</p> <p>2. Patient characteristics (work-related, psychological factors, etc.) and co-interventions (physiotherapy, cognitive behavioural therapy, return-to-work programs, etc.) modify the outcome of treatment for CLBP</p> <p>3. Cost-utility in terms of quality-adjusted life years differs between surgical and conservative treatment of CLBP.</p> <p>This study will recruit 1000 patients from orthopaedic spine units, rehabilitation centres, and pain clinics in Switzerland and New Zealand. Effectiveness will be measured by the Oswestry Disability Index (ODI) at baseline and after six months. The change in ODI will be the primary endpoint of this study.</p> <p>Multiple linear regression models will be used, with the change in ODI from baseline to six months as the dependent variable and the type of health care system, type of treatment, patient characteristics, and co-interventions as independent variables. Interactions will be incorporated between type of treatment and different co-interventions and patient characteristics. Cost-utility will be measured with an index based on EQol-5D in combination with cost data.</p> <p>Conclusion</p> <p>This study will provide evidence if differences across health care systems in the outcome of treatment of CLBP exist. It will classify patients with CLBP into different clinical subgroups and help to identify specific target groups who might benefit from specific surgical or conservative interventions. Furthermore, cost-utility differences will be identified for different groups of patients with CLBP. Main results of this study should be replicated in future studies on CLBP.</p
Leptin Administration Favors Muscle Mass Accretion by Decreasing FoxO3a and Increasing PGC-1α in ob/ob Mice
Absence of leptin has been associated with reduced skeletal muscle mass in leptin-deficient ob/ob mice. The aim of our study was to examine the effect of leptin on the catabolic and anabolic pathways regulating muscle mass. Gastrocnemius, extensor digitorum longus and soleus muscle mass as well as fiber size were significantly lower in ob/ob mice compared to wild type littermates, being significantly increased by leptin administration (P<0.001). This effect was associated with an inactivation of the muscle atrophy-related transcription factor forkhead box class O3 (FoxO3a) (P<0.05), and with a decrease in the protein expression levels of the E3 ubiquitin-ligases muscle atrophy F-box (MAFbx) (P<0.05) and muscle RING finger 1 (MuRF1) (P<0.05). Moreover, leptin increased (P<0.01) protein expression levels of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a regulator of muscle fiber type, and decreased (P<0.05) myostatin protein, a negative regulator of muscle growth. Leptin administration also activated (P<0.01) the regulators of cell cycle progression proliferating cell nuclear antigen (PCNA) and cyclin D1, and increased (P<0.01) myofibrillar protein troponin T. The present study provides evidence that leptin treatment may increase muscle mass of ob/ob mice by inhibiting myofibrillar protein degradation as well as enhancing muscle cell proliferation
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
Synthetic lethal therapies for cancer: what's next after PARP inhibitors?
The genetic concept of synthetic lethality has now been validated clinically through the demonstrated efficacy of poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of cancers in individuals with germline loss-of-function mutations in either BRCA1 or BRCA2. Three different PARP inhibitors have now been approved for the treatment of patients with BRCA-mutant ovarian cancer and one for those with BRCA-mutant breast cancer; these agents have also shown promising results in patients with BRCA-mutant prostate cancer. Here, we describe a number of other synthetic lethal interactions that have been discovered in cancer. We discuss some of the underlying principles that might increase the likelihood of clinical efficacy and how new computational and experimental approaches are now facilitating the discovery and validation of synthetic lethal interactions. Finally, we make suggestions on possible future directions and challenges facing researchers in this field
- …