24 research outputs found

    Sympathetic and swap cooling of trapped ions by cold atoms in a MOT

    Full text link
    A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion-atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb+^+) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.Comment: 10 pages, 3 figure

    Frequency-stabilization to 6x10^-16 via spectral-hole burning

    Full text link
    We demonstrate two-stage laser stabilization based on a combination of Fabry- Perot and spectral-hole burning techniques. The laser is first pre-stabilized by the Fabry-Perot cavity to a fractional-frequency stability of sigma_y(tau) < 10^-13. A pattern of spectral holes written in the absorption spectrum of Eu3+:Y2SiO5 serves to further stabilize the laser to sigma_y(tau) = 6x10^-16 for 2 s < tau < 8 s. Measurements characterizing the frequency sensitivity of Eu3+:Y2SiO5 spectral holes to environmental perturbations suggest that they can be more frequency stable than Fabry-Perot cavities

    Cool ion chemistry

    No full text
    corecore