85 research outputs found
Stay Tuned: What Is Special About Not Shifting Attention?
Background: When studying attentional orienting processes, brain activity elicited by symbolic cue is usually compared to a neutral condition in which no information is provided about the upcoming target location. It is generally assumed that when a neutral cue is provided, participants do not shift their attention. The present study sought to validate this assumption. We further investigated whether anticipated task demands had an impact on brain activity related to processing symbolic cues. Methodology/Principal Findings: Two experiments were conducted, during which event-related potentials were elicited by symbolic cues that instructed participants to shift their attention to a particular location on a computer screen. In Experiment 1, attention shift-inducing cues were compared to non-informative cues, while in both conditions participants were required to detect target stimuli that were subsequently presented at peripheral locations. In Experiment 2, a non-ambiguous "stay-central'' cue that explicitly required participants not to shift their attention was used instead. In the latter case, target stimuli that followed a stay-central cue were also presented at a central location. Both experiments revealed enlarged early latency contralateral ERP components to shift-inducing cues compared to those elicited by either non-informative (exp. 1) or stay-central cues (exp. 2). In addition, cueing effects were modulated by the anticipated difficulty of the upcoming target, particularly so in Experiment 2. A positive difference, predominantly over the posterior contralateral scalp areas, could be observed for stay-central cues, especially for those predicting that the upcoming target would be easy. This effect was not present for non-informative cues. Conclusions/Significance: We interpret our result in terms of a more rapid engagement of attention occurring in the presence of a more predictive instruction (i.e. stay-central easy target). Our results indicate that the human brain is capable of very rapidly identifying the difference between different types of instructions
Human Computer Interaction Meets Psychophysiology: A Critical Perspective
Human computer interaction (HCI) groups are more and more often exploring the utility of new, lower cost electroencephalography (EEG) interfaces for assessing user engagement and experience as well as for directly controlling computers. While the potential benefits of using EEG are considerable, we argue that research is easily driven by what we term naïve neurorealism. That is, data obtained with psychophysiological devices have poor reliability and uncertain validity, making inferences on mental states difficult. This means that unless sufficient care is taken to address the inherent shortcomings, the contributions of psychophysiological human computer interaction are limited to their novelty value rather than bringing scientific advance. Here, we outline the nature and severity of the reliability and validity problems and give practical suggestions for HCI researchers and reviewers on the way forward, and which obstacles to avoid. We hope that this critical perspective helps to promote good practice in the emerging field of psychophysiology in HCI
Prediction of Dementia in Primary Care Patients
BACKGROUND: Current approaches for AD prediction are based on biomarkers, which are however of restricted availability in primary care. AD prediction tools for primary care are therefore needed. We present a prediction score based on information that can be obtained in the primary care setting. METHODOLOGY/PRINCIPAL FINDINGS: We performed a longitudinal cohort study in 3.055 non-demented individuals above 75 years recruited via primary care chart registries (Study on Aging, Cognition and Dementia, AgeCoDe). After the baseline investigation we performed three follow-up investigations at 18 months intervals with incident dementia as the primary outcome. The best set of predictors was extracted from the baseline variables in one randomly selected half of the sample. This set included age, subjective memory impairment, performance on delayed verbal recall and verbal fluency, on the Mini-Mental-State-Examination, and on an instrumental activities of daily living scale. These variables were aggregated to a prediction score, which achieved a prediction accuracy of 0.84 for AD. The score was applied to the second half of the sample (test cohort). Here, the prediction accuracy was 0.79. With a cut-off of at least 80% sensitivity in the first cohort, 79.6% sensitivity, 66.4% specificity, 14.7% positive predictive value (PPV) and 97.8% negative predictive value of (NPV) for AD were achieved in the test cohort. At a cut-off for a high risk population (5% of individuals with the highest risk score in the first cohort) the PPV for AD was 39.1% (52% for any dementia) in the test cohort. CONCLUSIONS: The prediction score has useful prediction accuracy. It can define individuals (1) sensitively for low cost-low risk interventions, or (2) more specific and with increased PPV for measures of prevention with greater costs or risks. As it is independent of technical aids, it may be used within large scale prevention programs
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres
Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO’s second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h95%0=3.47×10−25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering
All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data
We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000 Hz and with a frequency time derivative in the range of [-1.0,+0.1]×10-8 Hz/s. Such a signal could be produced by a nearby, spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the LIGO data from the first six months of Advanced LIGO's and Advanced Virgo's third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (C.L.) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼1.7×10-25 near 200 Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are ∼6.3×10-26. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% C.L. upper limits on the strain amplitude are ∼1.4×10-25. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of ∼2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched
All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run
We present results from a search for gravitational-wave bursts in the data
collected by the LIGO and Virgo detectors between July 7, 2009 and October 20,
2010: data are analyzed when at least two of the three LIGO-Virgo detectors are
in coincident operation, with a total observation time of 207 days. The
analysis searches for transients of duration < 1 s over the frequency band
64-5000 Hz, without other assumptions on the signal waveform, polarization,
direction or occurrence time. All identified events are consistent with the
expected accidental background. We set frequentist upper limits on the rate of
gravitational-wave bursts by combining this search with the previous LIGO-Virgo
search on the data collected between November 2005 and October 2007. The upper
limit on the rate of strong gravitational-wave bursts at the Earth is 1.3
events per year at 90% confidence. We also present upper limits on source rate
density per year and Mpc^3 for sample populations of standard-candle sources.
As in the previous joint run, typical sensitivities of the search in terms of
the root-sum-squared strain amplitude for these waveforms lie in the range 5
10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs
entails the most sensitive all-sky search for generic gravitational-wave bursts
and synthesizes the results achieved by the initial generation of
interferometric detectors.Comment: 15 pages, 7 figures: data for plots and archived public version at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=70814&version=19, see
also the public announcement at
http://www.ligo.org/science/Publication-S6BurstAllSky
- …