8 research outputs found

    Effects of Total Resources, Resource Ratios, and Species Richness on Algal Productivity and Evenness at Both Metacommunity and Local Scales

    Get PDF
    The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships

    Riverine wood-pasture responds to grazing decline

    No full text
    There is insufficient available information on structural changes within wood-pastures including their relationship to abiotic influences such as livestock grazing, flooding and available soil nutrients. In this paper, we address the links between important environmental variables and different stages of the wood-pasture cycle, with the aim of understanding fluctuations in this relationship and processes that follow changes in wood-pasture condition. We used satellite and aerial image interpretation to identify structural vegetation shifts over 44 years under significantly declining livestock numbers. We used ground truthing of 24 plots to assess the current field scenario and employed canonical correspondence analysis (CCA) to evaluate the relationship between plant communities and environmental influences. Three dominant structural vegetation types grassland, transitional vegetation with thorny shrubs and woody encroachment were surveyed and the following set of variables was chosen: grazing intensity, inundation frequency, elevation, soil total nitrogen, soil available phosphorus, soil potassium, soil magnesium, soil calcium, soil pH and soil carbon to nitrogen ratio. Interpretation of satellite images revealed dominance of wood-pasture in the past, which alternated structurally between more open and more closed physiognomies. CCA with ground truthing data and forward selection revealed grazing intensity as the predominant ecological driver modifying vegetation structure, as well as transitioning vegetation patterns between open herbaceous and closed woody cover. Each structural vegetation type demonstrated a collective distribution pattern and a close relationship to certain abiotic drivers, indicating strong interactions between soil parameters, grazing pressure and vegetation composition

    The Braun-Blanquet Approach

    No full text
    corecore