11 research outputs found

    Selection and Clonal Propagation of High Artemisinin Genotypes of Artemisia annua

    No full text
    Artemisinin, produced in the glandular trichomes of Artemisia annua L. is a vital antimalarial drug effective against Plasmodium falciparum resistant to quinine-derived medicines. Although work has progressed on the semi-synthetic production of artemisinin, field production of A. annua remains the principal commercial source of the compound. Crop production of artemisia must be increased to meet the growing worldwide demand for artemisinin combination therapies (ACTs) to treat malaria. Grower artemisinin yields rely on plants generated from seeds from open-pollinated parents. Although selection has considerably increased plant artemisinin concentration in the past 15 years, seed-generated plants have highly variable artemisinin content that lowers artemisinin yield per hectare. Breeding efforts to produce improved F1 hybrids have been hampered by the inability to produce inbred lines due to self-incompatibility. An approach combining conventional hybridization and selection with clonal propagation of superior genotypes is proposed as a means to enhance crop yield and artemisinin production. Typical seed-propagated artemisia plants produce less than 1% (dry weight) artemisinin with yields below 25 kg/ha. Genotypes were identified producing high artemisinin levels of over 2% and possessing improved agronomic characteristics such as high leaf area and shoot biomass production. Field studies of clonally-propagated high-artemisinin plants verified enhanced plant uniformity and an estimated gross primary productivity of up to 70 kg/ha artemisinin, with a crop density of one plant m-2. Tissue culture and cutting protocols for the mass clonal propagation of A. annua were developed for shoot regeneration, rooting, acclimatization, and field cultivation. Proof of concept studies showed that both tissue culture-regenerated plants and rooted cutting performed better than plants derived from seed in terms of uniformity, yield, and consistently high artemisinin content. Use of this technology to produce plants with homogeneously-high artemisinin can help farmers markedly increase the artemisinin yield per cultivated area. This would lead to increased profit to farmers and decreased prices of ACT

    Stigma Development and Receptivity in Almond (Prunus dulcis)

    No full text
    • Background and Aims Fertilization is essential in almond production, and pollination can be limiting in production areas. This study investigated stigma receptivity under defined developmental stages to clarify the relationship between stigma morphology, pollen germination, tube growth and fruit set

    A Morphological and Histological Characterization of Bisexual and Male Flower Types in Pomegranate

    No full text
    Pomegranate [Punica granatum (Punicaceae)] is characterized by having two types of flowers on the same tree: hermaphroditic bisexual flowers and functionally male flowers. This condition, defined as functional andromonoecy, can result in decreased yields resulting from the inability of male flowers to set fruit. Morphological and histological analyses of bisexual and male flowers were conducted using light and scanning electron microscopy (SEM) to characterize the different flower types observed in pomegranate plants and to better understand their developmental differences. Bisexual flowers had a discoid stigma covered with copious exudate, elongated stigmatic papillae, a single elongate style, and numerous stamens inserted on the inner wall of the calyx tube. Using fluorescence staining, high numbers of pollen tubes were observed growing through a central stylar canal. Ovules were numerous, elliptical, and anatropous. In contrast, male flowers had reduced female parts and exhibited shortened pistils of variable heights. Stigmatic papillae of male flowers had little exudate yet supported pollen germination. However, pollen tubes were rarely observed in styles. Ovules in male flowers were rudimentary and exhibited various stages of degeneration. Pollen from both types of flowers was of similar size, approximate to 20 mu m, and exhibited similar percent germination using in vitro germination assays. Pollen germination was strongly influenced by temperature. Maximal germination (greater than 74%) was obtained at 25 and 35 degrees C; pollen germination was significantly lower at 15 degrees C (58%) and 5 degrees C (10%).Paramount Farming CompanyCNPq, Conselho Nacional de Desenvolvimento Cientifico e Tecnologic

    Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.

    No full text
    Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission
    corecore